In-band Network Telemetry (INT) Dataplane Specification
Version 2.1

The P4.org Applications Working Group. Contributions from
Alibaba, Arista, CableLabs, Cisco Systems, Dell, Intel, Marvell, Netronome, VMuware

2020-11-11

Contents

1. Introduction 3
2. Terminology 4
3. INT Modes of Operation)
3.1. INT Application Modes 5
3.2. INT Applied to Synthetic Traffic 6

4. What To Monitor 7
4.1. Device-level Information L 7
4.2. Ingress Information L 7
4.3. Egress Information 8

5. INT Headers 9
5.1. INT Header Types o o o e 9
5.2. Per-Hop Header Operations 9
5.2.1. INT Source Node e 9

5.2.2. INT Transit Hop Node o o 10

5.2.3. INT Sink Node e 10

5.3. MTU Settings o o o o 10
5.4. Congestion Considerationso 11
5.5. INT over any encapsulation o oo 12
5.6. Checksum Update 12
5.7. Header Location 13
5.7.1. INT over IPv4/GRE 13

5.7.2. INT over TCP/UDP 15

5.7.3. INT over VXLAN GPE 18

5.7.4. INT over Geneve 0 i i ittt e 19

5.8. INT-MD Metadata Header Format 20
5.9. INT-MX Header Format 25

6. Examples 29
6.1. Example with INT-MD over TCP 29
6.2. Example with INT-MX over TCP 31
6.3. Example with new UDP header and INT-MD inserted before TCP 32
6.4. Example with new UDP header and INT-MX inserted before TCP 33
6.5. Example with INT-MD in-between UDP header and UDP payload 35
6.6. Example with INT-MX in-between UDP header and UDP payload 36
6.7. Example with new IP and UDP headers and INT-MX inserted before [IPSec 37
6.8. Example with INT-MD over IPv4/GRE (Original packet IPv4) 39
6.9. Example with INT-MX over IPv4/GRE (Original packet IPv4) 40
6.10. Example with INT-MD over IPv4/GRE (Original packet CE or IP) 41
6.11. Example with INT-MX over IPv4/GRE (Original packet CE or IP) 43
6.12. Example with INT-MD over VXLAN GPE 44
6.13. Example with INT-MX over VXLAN GPE 45
6.14. Example with INT-MD over Geneve 46
6.15. Example with INT-MX over Geneve 47
6.16. Example with INT-MX including domain specific source-inserted metadata 48
6.17. Example with INT-MD including domain specific source-only metadata 49
2020-11-11 20:14 In-band Network Telemetry 2

1. INTRODUCTION

A. Appendix: An extensive (but not exhaustive) set of Metadata 50
A1, Node-level o e 50
A2, Ingresso 50
A3 Egress e 51
A 4. Buffer Information 51
A5, Miscellaneouso 52

B. Acknowledgements 52

C. Change log 53

1. Introduction

Inband Network Telemetry (“INT”) is a framework designed to allow the collection and reporting
of network state, by the data plane, without requiring intervention or work by the control plane in
collecting and delivering the state from the data plane. In the INT architectural model, packets
may contain header fields that are interpreted as “telemetry instructions” by network devices. INT
traffic sources (applications, end-host networking stacks, hypervisors, NICs, send-side ToRs, etc.)
can embed the instructions either in normal data packets, cloned copies of the data packets or in
special probe packets. Alternatively, the instructions may be programmed in the network data
plane to match on particular network flows and to execute the instructions on the matched flows.

These instructions tell an INT-capable device what state to collect. The network state infor-
mation may be directly exported by the data plane to the telemetry monitoring system, or can
be written into the packet as it traverses the network. When the information is embedded in the
packets, INT traffic sinks retrieve (and optionally report) the collected results of these instructions,
allowing the traffic sinks to monitor the exact data plane state that the packets “observed” while
being forwarded.

Some examples of traffic sink behavior are described below:

e OAM - the traffic sink! might simply collect the encoded network state, then export that
state to an external controller. This export could be in a raw format, or could be combined
with basic processing (such as compression, deduplication, truncation).

o Real-time control or feedback loops — traffic sinks might use the encoded data plane in-
formation to feed back control information to traffic sources, which could in turn use this
information to make changes to traffic engineering or packet forwarding. (Explicit congestion
notification schemes are an example of these types of feedback loops).

o Network Event Detection - If the collected path state indicates a condition that requires
immediate attention or resolution (such as severe congestion or violation of certain data-plane
invariances), the traffic sinks' could generate immediate actions to respond to the network

events, forming a feedback control loop either in a centralized or a fully decentralized fashion
(ala TCP).

"While this will be commonly done by Sink nodes, Transit nodes may also generate OAM’s or carry out Network
Event Detection

"While this will be commonly done by Sink nodes, Transit nodes may also generate OAM’s or carry out Network
Event Detection

2020-11-11 20:14 In-band Network Telemetry 3

2. TERMINOLOGY

The INT architectural model is intended to be generic and enables a number of interesting high
level applications, such as:

e Network troubleshooting and performance monitoring
— Traceroute, micro-burst detection, packet history (a.k.a. postcards?)

e Advanced congestion control
o Advanced routing

— Utilization-aware routing (For example, HULA3, CLOVE?)
o Network data plane verification

A number of use case descriptions and evaluations are described in the Millions of Little Minions
5
paper °.

2. Terminology

Monitoring System:
A system that collects telemetry data sent from different network devices. The monitoring
system components may be physically distributed but logically centralized.

INT Header:
A packet header that carries INT information. There are three types of INT Headers — eMbed
data (MD-type), eMbed instruction (MX-type) and Destination-type (See Section 5.1).

INT Packet:
A packet containing an INT Header.

INT Node:
An INT-capable network device that participates in the INT data plane by regularly carrying
out at least one of the following: inserting, adding to, removing, or processing instructions from
INT Headers in INT packets. Depending on deployment scenarios, examples of INT Nodes may
include devices such as routers, switches, and NICs.

INT Instruction:
Instructions indicating which INT Metadata (defined below) to collect at each INT node. The
instructions are either configured at each INT-capable node’s Flow Watchlist or written into
the INT Header.

Flow Watchlist:
A dataplane table that matches on packet headers and inserts or applies INT instructions on
each matched flow. A flow is a set of packets having the same values on the selected header
fields.

INT Source:
A trusted entity that creates and inserts INT Headers into the packets it sends. A Flow Watchlist
is configured to select the flows in which INT headers are to be inserted.

I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks, USENIX NSDI
2014.

SHULA: Scalable Load Balancing Using Programmable Data Planes, ACM SOSR 2016

4CLOVE: Congestion-Aware Load Balancing at the Virtual Edge, ACM CoNEXT 2017

Millions of Little Minions: Using Packets for Low Latency Network Programming and Visibility, ACM SIGCOMM
2014.

2020-11-11 20:14 In-band Network Telemetry 4

3. INT MODES OF OPERATION

INT Sink:
A trusted entity that extracts the INT Headers and collects the path state contained in the INT
Headers. The INT Sink is responsible for removing INT Headers so as to make INT transparent
to upper layers. (Note that this does not preclude having nested or hierarchical INT domains.)
The INT Sink can decide to send the collected information to the monitoring system.

INT Transit Hop:
A trusted entity that collects metadata from the data plane by following the INT Instructions.
Based on the instructions, the data may be directly exported to the telemetry monitoring system
or embedded into the INT Header of the packet.

Note that one physical device may play multiple roles — INT Source, Transit, Sink — at the same
time for the same or different flows. For example, an INT Source node may embed its own metadata
into the packet, playing the roles of INT Transit as well.

INT Metadata:
Information that an INT Source or an INT Transit Hop node inserts into the INT Header, or
into a telemetry report. Examples of metadata are described in Section 4.

INT Domain:
A set of inter-connected INT nodes under the same administration. This specification defines
the behavior and packet header formats for interoperability between INT nodes from different
vendors in an INT domain. The INT nodes within the same domain must be configured in
a consistent way to ensure interoperability between the nodes. Operators of an INT domain
should deploy INT Sink capability at domain edges to prevent INT information from leaking
out of the domain.

3. INT Modes of Operation

Since INT was first introduced at P4.org in 2015, a number of variations of INT have been evolved
and discussed in IETF and industry communities. Also the term ‘INT’ has been used to broadly
indicate data plane telemetry in general, not limited to the original classic INT where both instruc-
tions and metadata are embedded in the data packets. Hence we define different modes of INT
operation based on the degree of packet modifications, i.e., what to embed in the packets.

The different modes of operation are described in detail below, and summarized in Figure 1.

3.1. INT Application Modes

Original data packets are monitored and may be modified to carry INT instructions and metadata.
There are three variations based on the level of packet modifications.

o INT-XD (eXport Data): INT nodes directly export metadata from their dataplane to the
monitoring system based on the INT instructions configured at their Flow Watchlists. No
packet Modification is needed.

This mode was also known as “Postcard” mode in the previous versions of the Telemetry
Report spec, originally inspired by 2.

I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks, USENIX NSDI
2014.

2020-11-11 20:14 In-band Network Telemetry 5

3.2. INT Applied to Synthetic Traffic 3. INT MODES OF OPERATION

INT

In-band Network Telemetry

EXport Data EMbed Instruct(X)ions EMbed Data

Each node exports metadata Embed only Instructions in the pkt. Embed instructions and metadata,
based on Watchlist config. Each node exports metadata. export at the sink node.

(aka postcards) (aka IOAM Immediate Export) (classic INT)

INT-XD INT-MX INT-MD
L Limited packet modifications Packet modifications
No packet modifications . .
(Instructions only) (Instructions & Metadata)

Figure 1. Various modes of INT operation.

o INT-MX (eMbed instruct(X)ions): The INT Source node embeds INT instructions in the
packet header, then the INT Source, each INT Transit, and the INT sink directly send the
metadata to the monitoring system by following the instructions embedded in the packets.
The INT Sink node strips the instruction header before forwarding the packet to the receiver.
Packet modification is limited to the instruction header, the packet size doesn’t grow as the
packet traverses more Transit nodes.

INT-MX also supports ‘source-inserted’ metadata as part of Domain Specific Instructions.
This allows the INT Source to embed additional metadata that other nodes or the monitoring
system can consume.

This mode is inspired by IOAM’s “Direct Export” ¢ 7.

o INT-MD (eMbed Data): In this mode both INT instructions and metadata are written into
the packets. This is the classic hop-by-hop INT where 1) INT Source embeds instructions,
2) INT Source & Transit embed metadata, and 3) INT Sink strips the instructions and
aggregated metadata out of the packet and (selectively) sends the data to the monitoring
system. The packet is modified the most in this mode while it minimizes the overhead at the
monitoring system to collate reports from multiple INT nodes.

Since v2.0, INT-MD mode supports ‘source-only’ metadata as part of Domain Specific In-
structions. This allows the INT Source to embed additional metadata for the INT Sink or
the monitoring system to consume.

NOTE: the rest of the spec is assuming INT-MD as the default mode, unless specified
otherwise.

3.2. INT Applied to Synthetic Traffic

INT Source nodes may generate INT-marked synthetic traffic either by cloning original data packets
or by generating special probe packets. INT is applied to this traffic by transit nodes in exactly

SData Fields for In-situ OAM, draft-ietf-ippm-ioam-data-09, March 2020.
"In-situ OAM Direct Exporting, draft-ietf-ippm-ioam-direct-export-00, February 2020.

2020-11-11 20:14 In-band Network Telemetry 6

https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-09
https://tools.ietf.org/html/draft-ietf-ippm-ioam-direct-export-00

4. WHAT TO MONITOR

the same way as all traffic.

The only difference between live traffic and Synthetic traffic is that INT Sink nodes may need
to discard synthetic traffic after extracting the collected INT data as opposed to forwarding the
traffic. This is indicated by using the ‘D’ bit of the INT Header to mark relevant packets as being
copies/clones or probes, to be 'D’iscarded at the INT Sink.

All INT modes may be used on these synthetic/probe packets, as decided by the INT Source
node. Specifically the INT-MD (eMbed Data) mode applied to Synthetic or probe packets allows
functionality similar to IFAS.

It is likely that synthetic traffic created by cloning would be discarded at the Sink, while
Probe packets might be marked for forwarding or discarding, depending on the use-case. It is the
responsibility of the INT Source node to mark packets correctly to determine if the INT Sink will
forward or discard packets after extracting the INT Data collected along the path.

4. What To Monitor

In theory, one may be able to define and collect any device-internal information using the INT
approach. In practice, however, it seems useful to define a small baseline set of metadata that can
be made available on a wide variety of devices: the metadata listed in this section comprises such
a set. As the INT specification evolves, we expect to add more metadata to this INT specification.

The exact meaning of the following metadata (e.g., the unit of timestamp values, the precise
definition of hop latency, queue occupancy or buffer occupancy) can vary from one device to another
for any number of reasons, including the heterogeneity of device architecture, feature sets, resource
limits, etc. Thus, defining the exact meaning of each metadata is beyond the scope of this document.
Instead we assume that the semantics of metadata for each device model used in a deployment is
communicated with the entities interpreting/analyzing the reported data in an out-of-band fashion.

4.1. Device-level Information

Node id
The unique ID of an INT node. This is generally administratively assigned. Node IDs must be
unique within an INT domain.

4.2. Ingress Information

Ingress interface identifier
The interface on which the INT packet was received. A packet may be received on an arbitrary
stack of interface constructs starting with a physical port. For example, a packet may be received
on a physical port that belongs to a link aggregation port group, which in turn is part of a Layer
3 Switched Virtual Interface, and at Layer 3 the packet may be received in a tunnel. Although
the entire interface stack may be monitored in theory, this specification allows for monitoring
of up to two levels of ingress interface identifiers. The first level of ingress interface identifier
would typically be used to monitor the physical port on which the packet was received, hence a
16-bit field (half of a 4-Byte metadata) is deemed adequate. The second level of ingress interface
identifier occupies a full 4-Byte metadata field, which may be used to monitor a logical interface

8Inband Flow Analyzer, draft-kumar-ippm-ifa-02, April 2020.

2020-11-11 20:14 In-band Network Telemetry 7

https://tools.ietf.org/html/draft-kumar-ippm-ifa-02

4.3. Egress Information 4. WHAT TO MONITOR

on which the packet was received. A 32-bit space at the second level allows for an adequately
large number of logical interfaces at each network element. The semantics of interface identifiers
may differ across devices, each INT hop chooses the interface type it reports at each of the two
levels.

Ingress timestamp
The device local time when the INT packet was received on the ingress physical or logical port.

4.3. Egress Information

Egress interface identifier
The interface on which the INT packet was sent out. A packet may be transmitted on an
arbitrary stack of interface constructs ending at a physical port. For example, a packet may be
transmitted on a tunnel, out of a Layer 3 Switched Virtual Interface, on a Link Aggregation
Group, out of a particular physical port belonging to the Link Aggregation Group. Although
the entire interface stack may be monitored in theory, this specification allows for monitoring of
up to two levels of egress interface identifiers. The first level of egress interface identifier would
typically be used to monitor the physical port on which the packet was transmitted, hence a
16-bit field (half of a 4-Byte metadata) is deemed adequate. The second level of egress interface
identifier occupies a full 4-Byte metadata field, which may be used to monitor a logical interface
on which the packet was transmitted. A 32-bit space at the second level allows for an adequately
large number of logical interfaces at each network element. The semantics of interface identifiers
may differ across devices, each INT hop chooses the interface type it reports at each of the two
levels.

Egress timestamp
The device local time when the INT packet was processed by the egress physical or logical port.

Hop latency
Time taken for the INT packet to be switched within the device.

Egress interface TX Link utilization
Current utilization of the egress interface via which the INT packet was sent out. Again, devices
can use different mechanisms to keep track of the current rate, such as bin bucketing or moving
average. While the latter is clearly superior to the former, the INT framework does not stipulate
the mechanics and simply leaves those decisions to device vendors.

Queue occupancy
The build-up of traffic in the queue (in bytes, cells, or packets) that the INT packet observes in
the device while being forwarded. The format of this 4-octet metadata field is implementation
specific and the metadata semantics YANG model shall describe the format and units of this
metadata field in the metadata stack.

Buffer occupancy
The build-up of traffic in the buffer (in bytes, cells, or packets) that the INT packet observes in
the device while being forwarded. Use case is when the buffer is shared between multiple queues.
The format of this 4-octet metadata field is implementation specific and the metadata semantics
YANG model shall describe the format and units of this metadata field in the metadata stack.

A metadata semantics YANG model ? is being developed that allows nodes to report details of the
metadata format, units, and semantics.

9p4-dtel-metadata-semantics, https://github.com/p4lang/p4-applications/blob/master/telemetry /code/models/p4-
dtel-metadata-semantics.yang

2020-11-11 20:14 In-band Network Telemetry 8

https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang
https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang

5. INT HEADERS

5. INT Headers

This section specifies the format and location of INT Headers. INT Headers and their locations
are relevant for INT-MX and INT-MD modes where the INT instructions (and metadata stack in
case of MD mode) are written into the packets.

5.1. INT Header Types

There are three types of INT Headers: MD-type, MX-type and Destination-type. A given INT
packet may carry either of MD or MX type headers, and/or a Destination-type header. When
Destination-type and MD-type or MX-type headers are present, the MD-type header or MX-type
header must precede the Destination-type header.

o MD-type (INT Header type 1)

— Intermediate nodes (INT Transit Hops) must process this type of INT Header. The
format of this header is defined in Section 5.8.

o Destination-type (INT Header type 2)

— Destination headers must only be consumed by the INT Sink. Intermediate nodes must
ignore Destination headers.

— Destination headers can be used to enable Edge-to-Edge communication between the
INT Source and INT Sink. For example:

* INT Source can add a sequence number to detect loss of INT packets.

* INT Source can add the original values of IP TTL and INT Remaining Hop Count,
thus enabling the INT sink to detect network devices on the path that do not
support INT by comparing the IP TTL decrement against INT Remaining Hop
Count decrement (assuming each network device is an L3 hop)

— The format of Destination-type headers will be defined in a future revision. Note some
Edge-to-Edge INT use cases can be supported by ‘source-only’ and ‘source-inserted’
metadata, part of Domain Specific Instructions in the MD-type and MX-type headers.

o MX-type (INT Header type 3)

— Intermediate nodes (INT Transit Hops) must process this type of INT Header and gener-
ate reports to the monitoring system as instructed. The format of this header is defined
in Section 5.9.

5.2. Per-Hop Header Operations
5.2.1. INT Source Node

In the INT-MD and INT-MX modes, the INT Source node in the packet forwarding path creates
the INT-MD or INT-MX Header.

In INT-MD, the source node add its own INT metadata after the header. To avoid exhausting
header space in the case of a forwarding loop or any other anomalies, it is strongly recommended to
limit the number of total INT metadata fields added by Transit Hop nodes by setting the Remaining
Hop Count field in INT header appropriately.

The INT-MD and INT-MX headers are described in detail in the subsequent sections.

2020-11-11 20:14 In-band Network Telemetry 9

5.3. MTU Settings 5. INT HEADERS

5.2.2. INT Transit Hop Node

In the INT-MD mode, each node in the packet forwarding path creates additional space in the
INT-MD Header on-demand to add its own INT metadata. To avoid exhausting header space in
the case of a forwarding loop or any other anomalies, each INT Transit Hop must decrement the
Remaining Hop Count field in the INT header appropriately.

In the INT-MX mode, each node in the packet forwarding path follows the intructions in the
INT-MX Header, gathers the device specific metadata and exports the device metadata using the
Telemetry Report.

INT Transit Hop nodes may update the DS Flags field in the INT-MD or INT-MX header. The
Hop ML, Instruction Bitmap, Domain Specific ID and DS Instruction fields must not be modified
by Transit Hop nodes.

5.2.3. INT Sink Node

In INT-MD mode, the INT Sink node removes the INT Headers and Metadata stack from the
packet, and decides whether to report the collected information.

In INT-MX mode, the INT Sink node removes the INT-MX header, gathers the device specific
metadata and decides whether to report that metadata.

5.3. MTU Settings

In both INT-MX and INT-MD modes, it is possible that insertion of the INT header at the INT
Source node may cause the egress link MTU to be exceeded.

In INT-MD mode, as each hop creates additional space in the INT header to add its metadata,
the packet size increases. This can potentially cause egress link MTU to be exceeded at an INT
node.

This may be addressed in the following ways -

e It is recommended that the MTU of links between INT sources and sinks be configured to
a value higher than the MTU of preceding links (server/VM NIC MTUs) by an appropriate
amount. Configuring an MTU differential of [Per-hop Metadata Length*4*INT Hop Count
+ Fixed INT Header Length| bytes (just [Fixed INT Header Length] for INT-MX mode),
based on conservative values of total number of INT hops and Per-hop Metadata Length,
will prevent egress MTU being exceeded due to INT metadata insertion at INT hops. The
Fixed INT Header Length is the sum of INT metadata header length (12B) and the size of
encapsulation-specific shim/option header (4B) as defined in Section 5.7.

o An INT source/transit node may optionally participate in dynamic discovery of Path MTU
for flows being monitored by INT by transmitting ICMP message to the traffic source as
per Path MTU Discovery mechanisms of the corresponding L3 protocol (RFC 1191 for IPv4,
RFC 1981 for IPv6). An INT source or transit node may report a conservative MTU in the
ICMP message, assuming that the packet will go through the maximum number of allowed
INT hops (i.e. Remaining Hop Count will decrement to zero), accounting for cumulative
metadata insertion at all INT hops, and assuming that the egress MTU at all downstream
INT hops is the same as its own egress link MTU. This will help the path MTU discovery
source to converge to a path MTU estimate faster, although this would be a conservative
path MTU estimate. Alternatively, each INT hop may report an MTU only accounting for

2020-11-11 20:14 In-band Network Telemetry 10

5.4. Congestion Considerations 5. INT HEADERS

the metadata it inserts. This would enable the path MTU discovery source converge to a
precise path MTU, at the cost of receiving more ICMP messages, one from each INT hop.

Regardless of whether or not an INT transit node participates in Path MTU discovery, if it cannot
insert all requested metadata because doing so will cause the packet length to exceed egress link
MTU, it must either:

e not insert any metadata and set the M bit in the INT header, indicating that egress MTU
was exceeded at an INT hop, or

 report the metadata stack collected from previous hops (setting the Intermediate Report bit if
a Telemetry Report 2.0 '6 packet is generated) and remove the reported metadata stack from
the packet, including the metadata from this transit hop in either the report or embedding
in the INT-MD metadata header.

An INT source inserts 12 bytes of fixed INT headers, and may also insert Per-hop Metadata
Length*4 bytes of its own metadata. If inserting the fixed headers causes egress link MTU to be
exceeded, INT cannot not be initiated for such packets. If an INT source is programmed to insert
its own INT metadata, and there is enough room in a packet to insert fixed INT headers, but no
additional room for its INT metadata, the source must initiate INT and set the M bit in the INT
header.

In theory, an INT transit node can perform IPv4 fragmentation to overcome egress MTU lim-
itation when inserting its metadata. However, IPv4 fragmentation can have adverse impact on
applications. Moreover, IPv6 packets cannot be fragmented at intermediate hops. Also, fragment-
ing packets at INT transit hops, with or without copying preceding INT metadata into fragments
imposes extra complexity of correlating fragments in the INT monitoring engine. Considering all
these factors, this specification requires that an INT node must not fragment packets in order to
append INT information to the packet.

5.4. Congestion Considerations

Use of the INT encapsulation should not increase the impact of congestion on the network. While
many transport protocols (e.g. TCP, SCTP, DCCP, QUIC) inherently provide congestion control
mechanisms, other transport protocols (e.g. UDP) do not. For the latter case, applications may
provide congestion control or limit the traffic volume.

It is recommended not to apply INT to application traffic that is known not to be congestion
controlled (as described in RFC 8085 19 Section 3.1.11). In order to achieve this, packet filtering
mechanisms such as access control lists should be provided, with match criteria including IP protocol
and L4 ports.

Because INT encapsulation endpoints are located within the same administrative domain, an
operator may allow for INT encapsulation of traffic that is known not to be congestion controlled.
In this case, the operator should carefully consider the potential impact of congestion, and imple-
ment appropriate mechanisms for controlling or mitigating the effects of congestion. This includes
capacity planning, traffic engineering, rate limiting, and other mechanisms.

8 Telemetry Report Format Specification Version 2.0, May 2020.
10UDP Usage Guidelines, RFC 8085, March 2017.

2020-11-11 20:14 In-band Network Telemetry 11

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_v2_0.pdf
https://www.rfc-editor.org/info/rfc8085

5.5. INT over any encapsulation 5. INT HEADERS

5.5. INT over any encapsulation

The specific location for INT Headers is intentionally not specified: an INT Header can be in-
serted as an option or payload of any encapsulation type. The only requirements are that the
encapsulation header provides sufficient space to carry the INT information and that all INT nodes
(Sources, transit hops and Sinks) agree on the location of the INT Headers. The following choices
are potential encapsulations using common protocol stacks, although a deployment may choose a
different encapsulation format if better suited to their needs and environment.

o INT over VXLAN (as VXLAN payload, per GPE extension)

o INT over Geneve (as Geneve option)

o INT over NSH (as NSH payload)

e INT over TCP (as payload)

o INT over UDP (as payload)

o INT over GRE (as a shim between GRE header and encapsulated payload)

5.6. Checksum Update

As described above in Section 5.5, INT headers and metadata may be carried in an L4 protocol
such as TCP or UDP, or in an encapsulation header that includes an L4 header, such as VXLAN.
The checksum field in the TCP or UDP L4 header needs to be updated as INT nodes modify the L4
payload via insertion /removal of INT headers and metadata. However, there are certain exceptions.
For example, when UDP is transported over IPv4, it is possible to assign a zero checksum, causing
the receiver to ignore the value of the checksum field (as defined in RFC 768). For UDP over IPv6,
there are specific use cases in which it is possible to assign a zero Checksum (as defined in RFC
6936).

INT source, transit and sink nodes must comply with IETF standards for Layer 4 transport
protocols with respect to whether or not Layer 4 checksum is to be updated upon modification of
Layer 4 payload. For example, if an INT source/transit/sink hop receives UDP traffic with zero
L4 checksum, it must not update the L4 checksum in conformance with the behavior defined in
relevant IETF standards such as RFC 768 and RFC 6936.

When L4 checksum update is required, an INT source/transit node may update the checksum
in one of two ways:

o Update the L4 Checksum field such that the new value is equal to the checksum of the new
packet, after the INT-related updates (header additions/removals, field updates), or

o If the INT source indicates that Checksum-neutral updates are allowed by setting an instruc-
tion bit corresponding to the Checksum Complement metadata, then the INT source/transit
nodes may assign a value to the Checksum Complement metadata which guarantees that the
existing L4 Checksum is the correct value of the packet after the INT-related updates.

The motivation for the Checksum Complement is that some hardware implementations process
data packets in a serial order, which may impose a problem when INT fields and metadata that
reside after the L4 Checksum field are inserted or modified. Therefore, the Checksum Complement
metadata, if present, is the last metadata field in the stack.

Note that when the Checksum Complement metadata is present source/transit nodes may
choose to update the L4 Checksum field instead of using the Checksum Complement metadata. In

2020-11-11 20:14 In-band Network Telemetry 12

5.7. Header Location 5. INT HEADERS

this case the Checksum Complement metadata must be assigned the reserved value OxFFFFFFFF.
A host that verifies the L4 Checksum will be unaffected by whether some or all of the nodes chose
not to use the Checksum Complement, since the value of the L4 Checksum should fit the Checksum
of the payload in either of the cases.

INT sink cannot perform a Checksum-neutral update using Checksum Complement metadata
as it removes all INT headers from the packet. Thus, an INT sink when performing a checksum
update has to do so by updating the L4 Checksum field.

Regardless of whether checksum update is performed via modifying the 1.4 checksum field or via
use of Checksum Complement metadata, performing the update based on an incremental checksum
calculation (as is typically done) will ensure that any potential corruption is detected at the point
of checksum validation. If full checksum computation is performed at an INT node, it should be
preceded by checksum validation so as to not mask out any corruption at preceding hops.

5.7. Header Location

We describe four encapsulation formats in this specification, covering different deployment scenar-
ios, with and without network virtualization:

1. INT over IPv}/GRE - INT headers are carried between the GRE header and the encapsulated
GRE payload.

2. INT over TCP/UDP - A shim header is inserted following TCP/UDP header. INT Headers
are carried between this shim header and TCP/UDP payload. Since v2.0, the spec also
supports an option to insert a new UDP header (followed by INT headers) before the existing
L4 header. This approach doesn’t rely on any tunneling/virtualization mechanism and is
versatile to apply INT to both native and virtualized traffic.

3. INT over VXLAN - VXLAN generic protocol extensions ! are used to carry INT Headers
between the VXLAN header and the encapsulated VXLAN payload.

4. INT over Geneve - Geneve is an extensible tunneling framework, allowing Geneve options to
be defined for INT Headers.

5.7.1. INT over IPv4/GRE

In case the traffic being monitored is not encapsulated by any virtualization header, INT over
VXLAN or INT over Geneve is not helpful. Instead, a GRE encapsulation as defined in RFC 2784
12 can be utilized. The INT metadata header and INT metadata follows the GRE header. In an
administrative domain where INT is used, insertion of the INT metadata header and metadata in
GRE is enabled at the INT source and deletion of INT metadata header and metadata is enabled
at the INT sink by means of configuration.

There are two scenarios when utilizing GRE encapsulation to support INT:

1. If the incoming packet at the source node of the INT domain is GRE encapsulated, then the
source node should add the INT Metadata Header and Metadata following the GRE header.
The sink node of the INT domain should remove the INT Metadata Header and Metadata
stack before forwarding the GRE encapsulated packet to the destination.

1 Generic Protocol Extension for VXLAN, draft-ietf-nvo3-vxlan-gpe-09, December 2019.
12Generic Routing Encapsulation (GRE), RFC 2784, March 2000.

2020-11-11 20:14 In-band Network Telemetry 13

https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-09
https://www.rfc-editor.org/info/rfc2784

5.7. Header Location 5. INT HEADERS

2. If the incoming packet at the source node of the INT domain is not GRE encapsulated, then
the source node should add a GRE encapsulation and insert the INT Metadata Header and
Metadata following the GRE header. The sink node of the INT domain should remove the
GRE encapsulation along with removing the INT Metadata Header and the Metadata stack
before forwarding the packet to the destination.

IPv4 GRE Option format for carrying INT Header and Metadata:

0 1 2 3
01234567890123456789012345678901

ICIRIKIS|s|Recur| Flags | Ver | Protocol Type = TBD_INT |
B T s B e s E e
| Checksum (optional) | Offset (Optional) |
B T T e et T S B Eat St S
| Key (Optional) |
B St T e T T s T Tt T T
| Sequence Number (Optional) I
B e St T B Hat E L s o Tt TN S

| Routing (Optional) |

|
|
|
G
R
E
|
|
|
+-+-+-+-+-+—-+—-+—-+-+—-+—-+—-+—-+—-+—-+—+—-+—+—-+—+—-+—+—-+—+F—+—F—+—F—+—F+—+—-+<-+
| Type |G| Rsvdl Length | Next Protocol [
+-+ I
| | N
| Variable Option Data (INT Metadata Headers and Metadata) | T
| (.
Bt S T T B B e s e e Tt S T o

The GRE header and fields are defined in RFC 2784 2. The GRE Protocol Type value is
TBD_INT.

The INT Shim header for GRE option is defined as follows:

o Type (4b): This field indicates the type of INT Header following the shim header. The
Type values are defined in Section 5.1.

e G (1b): Indicates whether the GRE headers were inserted to transport INT by the INT
source.

— 0: Original packet (before insertion of INT headers and metadata) had GRE encapsu-
lation.

— 1: Original packet had no GRE encapsulation, hence the INT source inserted GRE.

— This is a hint that helps the INT sink (when it is not the GRE tunnel endpoint) determine
whether to remove the GRE headers part of INT decapsulation (if G=1).

o Rsvd (3b): reserved for future use, set to zero upon transmission and ignored upon reception.
o Length (8b): This is the total length of INT metadata header, INT stack excluding the shim
header in 4-byte words. A non-INT device may read this field and skip over INT headers.

12Generic Routing Encapsulation (GRE), RFC 2784, March 2000.

2020-11-11 20:14 In-band Network Telemetry 14

https://www.rfc-editor.org/info/rfc2784

5.7. Header Location 5. INT HEADERS

o Next Protocol (16b): this field contains an EtherType value (defined in the IANA registry
13) indicating the type of the protocol following the INT stack. An implementation receiving
a packet containing a type value which is not listed in the registry should discard the packet.

5.7.2. INT over TCP/UDP

In case the traffic being monitored is not encapsulated by any virtualization header, one can also
put the INT metadata just after layer 4 headers (TCP/UDP). The scheme assumes that the non-
INT devices between the INT source and the INT sink either do not parse beyond layer-4 headers
or can skip through the INT stack using the Length field in the INT shim header. If TCP has
any options, the INT stack may come before or after the TCP options but the decision must be
consistent within an INT domain.

Note that INT over UDP can be used even when the packet is encapsulated by VXLAN, Geneve,
or GUE (Generic UDP Encapsulation). INT over TCP/UDP also makes it easier to add INT stack
into outer, inner, or even both layers. In such cases both INT header stacks carry information for
respective layers and need not be considered interfering with each other.

A field in Ethernet, IP, or TCP/UDP should indicate if the INT header exists after the
TCP/UDP header. We propose three options.

1. UDP destination port field: a new UDP port number (INT TBD) will be assigned by IANA
to indicate the existence of INT after UDP. This option supports two cases:

e The original packet already has UDP header either as user application protocol or as
part of another UDP-based encapsulation such as VXLAN, GENEVE, RoCEv2. INT
is inserted after the UDP header with the UDP destination port number changed to
INT_TBD. The original destination port number is carried in the shim header for the
INT sink to restore, when it removes the INT stack from the packet.

e A new UDP header for INT is inserted between IP and the existing .4 header. The
protocol field of TP header is set to 17 for UDP and the original IP protocol value is
carried in the INT shim header. In the new UDP header, INT_TBD is used as the
destination port number. It is recommended that the source port number of the new
UDP header be calculated using a hash of fields from the original packet, for example
the original outer 5 tuple or the original L4 header fields. This is to enable a level of
entropy for ECMP /LAG load balancing logic. It is recommended that the checksum in
the new UDP header be set to zero. For IPv6 packets, this falls under the case of tunnel
protocols, which are allowed to use zero UDP checksums as specified in RFC 6936. The
existing L4 header will typically include a checksum computed using the encapsulating
IPv6 header fields, thus offering some protection against IPv6 header corruption.

In both cases, traffic with INT headers is likely to be hashed to a different path in the
network as the new UDP destination port (INT _TBD) becomes part of the outer 5 tuple
used by ECMP.

The INT shim header for UDP has a field NPT (Next Protocol Type) that indicates which
of the two cases are applied to a given INT packet. In case a new UDP header was inserted,
INT sink must copy the original IP protocol number from the shim header to IP header, and

I3TANA Ethernet Numbers.

2020-11-11 20:14 In-band Network Telemetry 15

https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml

5.7. Header Location 5. INT HEADERS

strip the newly added UDP header with all INT headers. For the case that original packet
already had UDP header, INT sink must restore the original destination port number from
the shim header into the UDP header and strip the INT headers.

2. IPv4 DSCP or IPv6 Traffic Class field: A value or a bit can be used to indicate the existence
of INT after TCP/UDP. When the INT source inserts the INT header into a packet, it sets
the reserved value in the field or sets the bit. The INT source may write the original DSCP
value in the INT headers so that the INT sink can restore the original value. Restoring the
original value is optional.

e Allocating a bit, as opposed to a value codepoint, will allow the rest of DSCP field to
be used for QoS, hence allowing the coexistence of DSCP-based QoS and INT. If the
traffic being monitored is subjected to QoS services such as rate limiting, shaping, or
differentiated queueing based on DSCP field, QoS classification in the network must be
programmed to ignore the designated bit position to ensure that the INT-enabled traffic
receives the same treatment as the original traffic being monitored.

e In brownfield scenarios, however, the network operator may not find a bit available to
allocate for INT but may still have a fragmented space of 32 unused DSCP values. The
operator can allocate an INT-enabled DSCP value for every QoS DSCP value, map the
INT-enabled DSCP value to the same QoS behavior as the corresponding QoS DSCP
value. This may double the number of QoS rules but will allow the co-existence of
DSCP-based QoS and INT even when a single DSCP bit is not available for INT.

e Within an INT domain, DSCP values used for INT must exclusively be used for INT.
INT transit and sink nodes must not receive non-INT packets marked with DSCP values
used for INT. Any time a node forwards a packet into the INT domain and there is no
INT header present, it must ensure that the DSCP /Traffic class value is not the same
as any of the values used to indicate INT.

3. Probe Marker fields: If DSCP field or values cannot be reserved for INT, probe marker option
could be used. A specific 64-bit value can be inserted after the TCP/UDP header to indicate
the existence of INT after TCP/UDP. These fields must be interpreted as unsigned integer
values in network byte order. This approach is a variation of an early IETF draft with existing

implementation'4.

INT probe marker for TCP/UDP:

0 1 2 3
01234567890123456789012345678901
S S S S S S S S S S NS S
| Probe Marker (1) |
S S S S S S S S S
| Probe Marker (2) |

+-t—F—t—t—t—+—+

With arbitrary values being inserted after TCP/UDP header as probe markers, the likelihood
of conflicting with user traffic in a data center is low, but cannot be completely eliminated. To

4Data-plane probe for in-band telemetry collection, draft-lapukhov-dataplane-probe-01, June 2016.

2020-11-11 20:14 In-band Network Telemetry 16

https://tools.ietf.org/html/draft-lapukhov-dataplane-probe-01

5.7. Header Location 5. INT HEADERS

further reduce the chance of conflict, a deployment could choose to also examine TCP/UDP
port numbers to validate INT probe marker.

Any of the above options may be used in an INT domain, provided that the INT transit and sink
nodes in the INT domain comply with the mechanism chosen at the INT sources, and are able to
correctly identify the presence and location of INT headers. The above approaches are not intended
to interoperate in a mixed environment, for example it would be incorrect to mark a packet for INT
using both DSCP and probe marker, as INT nodes that only understand DSCP marking and do
not recognize probe markers may incorrectly interpret the first four bytes of the probe marker as
INT shim header. It is strongly recommended that only one option be used within an INT domain.

We introduce an INT shim header for TCP/UDP. The INT metadata header and INT metadata
stack will be encapsulated between the shim header and the TCP/UDP payload.

INT shim header for TCP/UDP:

0 1 2 3

01234567890123456789012345678901
o B B L St S s
| Type |INPTIRIRI Length | UDP port, IP Proto, or DSCP |

.................................

o Type (4b): This field indicates the type of INT Header following the shim header. The
Type values are defined in Section 5.1.

o« NPT (Next Protocol Type, 2b): This field is meaningful only when the UDP destination
port number (INT_TBD) is used to indicate the existence of INT. In the other cases, this
field must be zero. When UDP destination port is INT__TBD, this field may have one of the
two values:

— one (1): indicates that the original UDP payload follows the INT stack, and the last
two bytes of the shim header carry the original UDP destination port.

— two (2): indicates that another (the original) L4 header follows the INT stack, and the
last byte of the shim header carries the IP protocol value for the L4 layer.

o Length (8b): This is the total length of INT metadata header and INT stack in 4-byte
words. The length of the shim header (1 word) is NOT counted since INT version 2.0. A
non-INT device may read this field and skip over INT headers.

o UDP port, IP proto, or DSCP (16b): The contents of this field differ depending on the
value of NPT.

— NPT=0: The first byte and the last two bits of this 16b field are reserved, set to zero
upon transmission and ignored upon reception. The first 6 bits of the second byte may
optionally carry the original DSCP value.

— NPT=1: The original UDP destination port value.

— NPT=2: The first byte is reserved, set to zero upon transmission and ignored upon
reception. The second byte carries the original IP protocol value.

The other bits in the shim header are reserved (R) for future use, set to zero upon transmission
and ignored upon reception.

2020-11-11 20:14 In-band Network Telemetry 17

5.7. Header Location 5. INT HEADERS

5.7.3. INT over VXLAN GPE

VXLAN is a common tunneling protocol for network virtualization and is supported by most
software virtual switches and hardware network elements. The VXLAN header as defined in RFC
7348 is a fixed 8-byte header as shown below.

VXLAN Header:

0 1 2 3
01234567890123456789012345678901
B s T Tt S S B St T T e B e et Sk S S
IRIR|Ver|IIP|BI|O]| Reserved |
ottt bttt bt —t =ttt b=t =t =t bbbt~ —F—F—b b=t —+—+

| VXLAN Network Identifier (VNI) | Reserved

e S e S e R At S S IS

The amount of free space in the VXLAN header allows for carrying minimal network state infor-
mation. Hence, we embed INT metadata in a shim header between the VXLAN header and the
encapsulated payload.

The VXLAN header as defined in RFC 7348 does not specify the protocol being encapsulated
and assumes that the payload following the VXLAN header is an Ethernet payload. Internet draft
draft-ietf-nvo3-vxlan-gpe ! proposes changes to the VXLAN header to allow for multi-protocol
encapsulation. We use this VXLAN generic protocol extension draft and propose a new “Next
Protocol” field value for INT.

VXLAN GPE Header:

0 1 2 3

01234567890123456789012345678901
s T S s E Tt Tt St S B e S Sk S S
IRIR|Ver|II|P|BI|O]| Reserved | Next Protocol |
ottt =ttt bt —t =ttt —t—t =ttt bbb —t—t— b b=t —+—+
| VXLAN Network Identifier (VNI) | Reserved

e e o e s St S B e B e Bt

o P bit: Flag bit 5 is defined as the Next Protocol bit. The P bit MUST be set to 1 to indicate
the presence of the 8-bit next protocol field.

e Next Protocol Values:

0x01: IPv4

0x02: IPv6

0x03: Ethernet

— 0x04: Network Service Header (NSH)

— 0x05 to 0x7F: Unassigned

0x80 to OxFF: Unassigned (shim headers)

0x82: In-band Network Telemetry Header (This value has not been reserved by VXLAN
GPE specification yet, and is hence subject to change)

1 Generic Protocol Extension for VXLAN, draft-ietf-nvo3-vxlan-gpe-09, December 2019.

2020-11-11 20:14 In-band Network Telemetry 18

https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-09

5.7. Header Location 5. INT HEADERS

When there is one INT Header in the VXLAN GPE stack, the VXLAN GPE header for the INT
Header will have a next protocol value other than INT Header indicating the payload following the
INT Header - typically Ethernet. If there are multiple INT Headers in the VXLAN GPE stack (for
example if both MD and destination type INT headers are being carried), then all VXLAN GPE
shim headers for the INT Headers other than the last one will carry 0x82 for their next protocol
values, and the VXLAN GPE header for the last INT Header will carry next protocol value of the
original VXLAN payload (e.g., Ethernet).

To embed a variable-length data (i.e., INT metadata) in the VXLAN GPE stack, we introduce
the INT shim header. This header follows each VXLAN GPE header for INT.

INT shim header for VXLAN GPE encapsulation:

0 1 2 3

01234567890123456789012345678901
ot B R Bt St et St N S
| Type | Rsvd | Length |G| Reserved | Next Protocol
e B St T St et S S
| Variable Option Data (INT Metadata Headers and Metadata) |

.................................

Type (4b): This field indicates the type of INT Header following the shim header. The
Type values are defined in Section 5.1.

Rsvd (4b): These 4 bits must be set to zero in order to allign with the shim header format
recommended by Internet draft draft-ietf-nvo3-vxlan-gpe, which allocates 8 bits for the Type
field.

Length: This is the total length of the variable INT option data, not including the shim
header, in 4-byte words.

G: Indicates whether the original packet (before insertion of INT headers and metadata) used
a VXLAN or VXLAN GPE encapsulation.

— 0: Original packet used VXLAN GPE encapsulation.

— 1: Original packet used VXLAN encapsulation.

— This may be used as a hint that helps the INT sink (when it is not the VI'EP) determine
whether to progress the packet using a VXLAN GPE encapsulation, or whether to con-
vert the VXLAN GPE encapsulation back to a VXLAN (without GPE) encapsulation.

5.7.4. INT over Geneve

Geneve is a generic and extensible tunneling framework, allowing for INT metadata to be carried
in TLV format as “Option headers” in the tunnel header.
Geneve Header:

0 1 2 3
01234567890123456789012345678901

.................................

|[Ver| Opt Len |0ICI Rsvd. | Protocol Type

.................................

.................................

2020-11-11 20:14 In-band Network Telemetry 19

5.8. INT-MD Metadata Header Format 5. INT HEADERS

I Variable Length Options I

B s S T Tt e e Tt S T et 3
Geneve Option for INT:

1 2 3
01234567890123456789012345678901

.................................

| Option Class | Type IRIRIR| Length |
ottt ottt bttt bt —t—t bt — b=ttt — b=ttt —t—+
| Variable Option Data (INT Metadata Headers and Metadata) |

t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—t—t—t -ttt —F—F—F—F—F—+—+—+
Note:

e We do not need to reserve any special values for fields in the base Geneve header for INT.

o Users may or may not use INT with Geneve along with VNI (network virtualization), though
using INT with Geneve without network virtualization would be a bit wasteful.

e The Geneve Option Class codepoint 0x0103 has been tentatively assigned for INT 1°.

e The Geneve Option Type field indicates the type of INT Header in the Geneve Option. The
Type values are defined in Section 5.1.

e The variable length option data following the Geneve Option Header carries the actual INT
metadata header and metadata.

e The Length field of the Geneve Option header is 5-bits long, which limits a single Geneve
option instance to no more than 124 bytes long (31 4). Remaining Hop Count* in INT-MD
type header has to be set accordingly at the INT source to ensure that the Geneve option
does not overflow. The entire INT-MD header must fit in a single Geneve option.

5.8. INT-MD Metadata Header Format

In this section, we define the format of the INT-MD metadata header, and the metadata itself.
INT-MD Metadata Header and Metadata Stack:

0 1 2 3
01234567890123456789012345678901

.................................

|Ver = 2|DI|EIM]| Reserved | Hop ML |RemainingHopCnt |

.................................

Instruction Bitmap | Domain Specific ID
e e S S St Bt S R At

|
+
| DS Instruction | DS Flags |
e S et s Bt S e S St St e
|

INT Metadata Stack (Each hop inserts Hop ML * 4B of metadata) |

t—F—+—+

S S S ST ST W ST S ST W ST S S WS ST O W
| Last INT metadata |

tt—F—t—t—t—t—+—+—+

'STANA Network Virtualization Overlay (NVO3), Geneve Option Class

2020-11-11 20:14 In-band Network Telemetry 20

https://www.iana.org/assignments/nvo3/nvo3.xhtml

5.8. INT-MD Metadata Header Format 5. INT HEADERS

e INT-MD metadata header is 12 bytes long followed by a stack of INT metadata. Each
metadata is either 4 bytes or 8 bytes in length. Each INT hop adds the same length of
metadata, except for the source node if there is any ‘source-only’ metadata. The total length
of the metadata stack is variable as different packets may traverse different paths and hence
different number of INT hops.

e Ver (4b): INT metadata header version. Should be 2 for this version.

o D (1b): Discard.
— INT Sink must Discard the packet after Extracting INT-MD metadata.
« E (1b): Max Hop Count exceeded.

— This flag must be set if a node cannot prepend its own metadata due to the Remaining
Hop Count reaching zero.
— E bit must be set to 0 by INT source

e M (1b): MTU exceeded

— This flag must be set if a node cannot add all of the requested metadata because doing
so will cause the packet length to exceed egress link MTU. In this case, the node must
not add any metadata to the packet, and set the M bit in the INT header. Note that
it is possible for egress MTU limitation to prevent INT metadata insertion at multiple
hops along a path. The M bit simply serves as an indication that INT metadata was not
inserted at one or more hops and corrective action such as reconfiguring MTU at some
links may be needed, particularly when INT nodes are not participating in path MTU
discovery. The M bit is not aimed at readily identifying which node(s) did not insert INT
metadata due to egress MTU limitation. In theory, if this does not occur at consecutive
hops, it may be possible for the monitoring system to derive which node(s) set the M bit
based on knowledge of the network topology and “Node ID, Ingress interface ID, Egress
interface ID” tuples in the INT metadata stack.

o R (12b): Reserved bits, should be set to 0 by the INT source and ignored by other nodes.

o« Hop ML (5b): Per-hop Metadata Length. This is the length of metadata including the
Domain Specific Metadata in 4-Byte words to be inserted at each INT transit hop.

— Hop ML is set by the INT source for transit and sink hops to abide by. If an INT
domain uses ‘source-only’ Domain Specific Metadata, defined below, the length of the
source-only Domain Specific Metadata is excluded from the Hop ML.

— The largest value of Hop ML for baseline and domain specific metadata is 31.

o Remaining Hop Count (8b): The remaining number of hops that are allowed to add their
metadata to the packet.

— Upon creation of an INT metadata header, the INT Source must set this value to the
maximum number of hops that are allowed to add metadata instance(s) to the packet.

2020-11-11 20:14 In-band Network Telemetry 21

5.8. INT-MD Metadata Header Format 5. INT HEADERS

Each INT node on the path, including the INT Source as well as INT Transit Hops, must
decrement the Remaining Hop Count if and when it pushes its local metadata onto the
stack.

— When a packet is received with the Remaining Hop Count equal to 0, the node must
ignore the INT instructions in the Instruction Bitmap and DS Instruction, pushing no
new metadata onto the stack, and the node must set the E bit.

e Instruction Bitmap: Each bit corresponds to a specific standard metadata as specified in
Section 4.

— bit0 (MSB): Node ID

— bitl: Level 1 Ingress Interface ID (16 bits) + Egress Interface ID (16 bits)
— bit2: Hop latency

bit3: Queue ID (8 bits) + Queue occupancy (24 bits)

bit4: Ingress timestamp (8 bytes)

bith: Egress timestamp (8 bytes)

— bit6: Level 2 Ingress Interface ID + Egress Interface ID (4 bytes each)
— bit7: Egress interface Tx utilization

bit8: Buffer ID (8 bits) + Buffer occupancy (24 bits)

bit15: Checksum Complement

The remaining bits are reserved.

The semantics of Queue occupancy and Buffer occupancy is the default semantics of those
two metadata. Additional semantics as needed for different implementation can be defined
in the metadata semantics YANG model °.

Bits 0 - 14 are Baseline INT Instructions. Each instruction bit that is set requests 4 bytes of
metadata to be inserted at each hop, except for bits 4-6, each requires 8 bytes of metadata.
Per-hop metadata length (Hop ML) is set accordingly at the INT source.

o Domain Specific ID (16b): The unique ID of the INT Domain. If the Domain Specific
ID matches any Domain ID known to this node, then additional processing of the Domain
Specific Flags (DS Flags) and Domain Specific Instruction (DS Instruction) is required.

The Domain Specific ID value 0x0000 is the default, known to all INT nodes. For this value,
all DS Instruction bits are treated as reserved. Operators can assign values in the range
0x0001 to OxFFFF.

o DS Instruction (16b): Instruction bitmap specific to the INT domain identified by the
Domain Specific ID. Each bit that is set requests that Domain Specific Metadata be appended
to the Baseline Metadata before the Checksum Complement is inserted.

Some instruction bits can be defined as ‘source-only’ metadata by the INT domain. Those
metadata will be inserted only by the INT source, not by INT transit or sink nodes. In a
sense, ‘source-only’ bits do not serve as instructions for downstream INT nodes to follow. The
INT source sets the bits to indicate which source-only DS metadata it’s adding such that the
monitoring system (or any consumer of the metadata) knows how to parse and use the data.

9p4-dtel-metadata-semantics, https://github.com/p4lang/p4-applications/blob/master/telemetry /code/models/p4-
dtel-metadata-semantics.yang

2020-11-11 20:14 In-band Network Telemetry 22

https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang
https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang

5.8. INT-MD Metadata Header Format 5. INT HEADERS

The amount of Domain Specific Metadata added by each hop must be a multiple of 4 bytes,
determined from the DS Instruction. In case of INT transit, the amount must be consistent
with the per-hop metadata length (Hop ML) set by the INT source. The amount of Domain
Specific Metadata added by the INT source can be larger than the amount added by a transit
hop and the delta must match the total size of ‘source-only’ Domain Specific Metadata.
Although the delta is excluded in Hop ML, it must be counted in the INT length field of the
INT shim header.

e Each INT Transit node along the path that supports INT, and the INT Source node as well,
adds its own metadata values as specified in the Instruction Bitmap and DS Instruction,
immediately after the INT metadata header.

— When adding new metadata, each node must prepend its metadata in front of the meta-
data that are already added by the upstream nodes. This is similar to the push operation
on a stack data structure. Hence, the most recently added metadata appears at the top
of the stack. The node must add metadata in the order of bits set in the Instruction
Bitmap and DS Instruction, except that the Checksum Complement is last.

— If a node is unable to provide a metadata value specified in the instruction bitmap
because its value is not available, it must add a special all-ones reserved value indicating
“invalid” (4 or 8 bytes of 0xFF depending on metadata length).

— Reserved bits in the Instruction Bitmap are to be handled similarly. If an INT transit
hop receives a reserved bit set in the Instruction Bitmap (e.g. set by a INT source that
is running a newer version), the transit hop must either add corresponding metadata
filled with the reserved value OxFFFFFFFF or must not add any INT metadata to the
packet. This means that an instruction bit marked reserved in this specification may
be used for a 4B metadata in a subsequent minor version while still being backward
compatible with this specification. However, an instruction bit marked reserved in this
specification may be used for a 8B metadata only in the next major version, breaking
backward compatibility and requiring all INT nodes to be upgraded to the new major
version. For example a version 2.0 INT node cannot operate alongside version 3.0 INT
nodes if a new 8B metadata is introduced in version 3.0, as the version 2.0 INT node
could insert OxFFFFFFFF reserved value for a 8B metadata field.

— If the Domain Specific ID does not match any Domain ID known to this node, then the
node is required to either:

* Pad the node’s INT Metadata stack with the special all-ones reserved value for a
Domain Specific Metadata length, calculated by subtracting from the Hop ML a
length computed from all bits in the 16-bit Instruction Bitmap, or

* Skip INT processing altogether and not insert any metadata into the packet.

— An INT-capable node may be limited in the maximum number of instructions it can
process and/or maximum length of metadata it can insert in data packets. An INT
hop that cannot process all instructions must still insert Hop ML * 4 bytes, with all-
ones reserved value (4 or 8 bytes of O0xFF depending on the length of metadata) for
the metadata corresponding to instructions it cannot process. An INT hop that cannot
insert Per-hop Metadata Length * 4 bytes must skip INT processing altogether and not
insert any metadata in the packet. This ensures that each INT node adds either zero
bytes or Hop ML * 4 bytes to the packet.

2020-11-11 20:14 In-band Network Telemetry 23

5.8. INT-MD Metadata Header Format 5. INT HEADERS

— If an INT hop does not add metadata to a packet due to any of the above reasons, it
must not decrement the Remaining Hop Count in the INT metadata header.

e The INT Sink node has the option to add its local telemetry metadata in either of the following
ways, with differing implementation dependent impact:

1. The INT Sink’s local telemetry metadata may be added to the INT-MD metadata stack
by following the same procedures described just above for INT Transit nodes. The meta-
data stack with the INT Sink’s local telemetry metadata is included in the Telemetry
Report, typically in a truncated packet fragment.

2. The INT Sink’s local telemetry metadata may be added to the Telemetry Report’s
Variable Optional Baseline Metadata and Variable Optional Domain Specific Metadata,
following procedures similar to those described for INT-MX nodes in Section 5.9, with
the following addition and restriction:

— RepMdBits bit 15 is also cleared since the Checksum Complement is not applicable
in the Individual Report Header. If the packet is dropped, then RepMdBits bit 15
may be set since the bit is repurposed from its usage in the INT-MD metadata
header.

— The ‘source-only’ metadata is reported in the metadata stack, typically in a trun-
cated packet fragment, rather than the Variable Optional Domain Specific Metadata.

The expectation is that each INT node implementation will only support one of these, while
monitoring systems should support both.

e Summary of the field usage

— The INT Source must set the following fields:

* Ver, D, M, Hop ML, Remaining Hop Count, and Instruction Bitmap.
* INT Source should set all reserved bits to zero.
* INT Source may set the Domain-specific fields.

— Intermediate transit nodes can set the following fields:

* E, M, Remaining Hop Count, and DS Flags fields.
* Intermediate transit nodes must not modify the Hop ML, Instruction Bitmap, Do-
main Specific ID and DS Instruction in the INT-MD header.

o The length (in bytes) of the INT metadata stack must always be a multiple of (Hop ML *
4), plus the size of ‘source-only’ Domain Specific Metadata if added by the source. The total
stack length can be determined by subtracting the total INT fixed header sizes (12 bytes)
from (shim header length * 4).

2020-11-11 20:14 In-band Network Telemetry 24

5.9. INT-MX Header Format 5. INT HEADERS

5.9. INT-MX Header Format

In this section, we define the format of the INT-MX header.
INT-MX Header:

1 2 3

01234567890123456789012345678901

+—t—F—+—+

|Ver = 2|D| Reserved |

+t—t—t—t—t—t—t—t—t—t—t—t—t—t—+—

s T St Tt Rt St Sl S R

—t—t—t—t—t—t—t—t—t—t—t—t—t—t—+—+

Instruction Bitmap Domain Specific ID |

DS Instruction DS Flags |

+
+ot—+—+
+

—t—t—t—t—d bttt =ttt =ttt —+

Optional Domain Specific 'Source-Inserted' Metadata |

................................

The INT-MX header is 12 bytes long. Each metadata requested in the INT-MX Header
instruction is either 4 bytes or 8 bytes in length. Each INT node in the forwarding path will
send the requested metadata to the monitoring system in the Telemetry Report.

Details of the metadata semantics and format of the Telemetry Report can be accessed in the

Telemetry Report Format Specification 6.

Ver (4b): INT-MX header version. Should be 2 for this version.
D (1b): Discard.

— INT Sink must Discard the packet after sending the metadata requested in the INT-MX
header to the monitoring system.

R (27b): Reserved bits.
— Should be set to 0 by INT Source and ignored by other nodes.

Instruction Bitmap: Each bit corresponds to a specific standard metadata as specified in
Section 4.

bit0 (MSB): Node ID

bitl: Level 1 Ingress Interface ID (16 bits) + Egress Interface ID (16 bits)
bit2: Hop latency

— bit3: Queue ID (8 bits) + Queue occupancy (24 bits)

— bit4: Ingress timestamp (8 bytes)

bith: Egress timestamp (8 bytes)

bit6: Level 2 Ingress Interface ID + Egress Interface ID (4 bytes each)
bit7: Egress interface Tx utilization

— bit8: Buffer ID (8 bits) + Buffer occupancy (24 bits)

— The remaining bits are reserved.

16 Telemetry Report Format Specification Version 2.0, May 2020.

2020-11-11 20:14 In-band Network Telemetry 25

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_v2_0.pdf

5.9. INT-MX Header Format 5. INT HEADERS

The semantics of Queue occupancy and Buffer occupancy is the default semantics of those
two metadata. Additional semantics as needed for different implementation can be defined
in the metadata semantics YANG model ?.

Bits 0 - 14 are Baseline INT Instructions that will be reported in RepMdBits and Variable
Optional Baseline Metadata in the Telemetry Report. Each instruction bit that is set requests
4 bytes of metadata to be sent to the monitoring system at each hop, except for bits 4-6, each
requires 8 bytes of metadata.

o Domain Specific ID (16b): The unique ID of the INT Domain. If the Domain Specific
ID matches any Domain ID known to this node, then additional processing of the Domain
Specific Flags (DS Flags) and Domain Specific Instruction (DS Instruction) is required.

The Domain Specific ID value 0x0000 is the default, known to all INT nodes. For this value,
all DS Instruction bits are treated as reserved. Operators can assign values in the range
0x0001 to OxFFFF.

o DS Instruction (16b): Instruction bitmap specific to the INT domain identified by the
Domain Specific ID. When a bit is defined for a particular domain, in addition to the metadata
semantics and syntax, the definition must specify the behavior with respect to the following
properties:

— DS Instruction Mode:

* Export: Each bit that is set requests that each node send this metadata in its
telemetry report. This is similar to the bits in the Instruction Bitmap, except that
the metadata syntax and semantics are defined in a domain specific manner.

* Source-Inserted: Each bit that is set represents metadata that is inserted by the
source node into the Optional Domain Specific ‘Source-Inserted’ Metadata in this
packet.

— Source-Inserted Metadata Reporting Requirement:

* All Nodes: Each node including the source, transit, and sink nodes should report
this source-inserted metadata to the monitoring system along with the node’s own
metadata. One example of a type of metadata that would benefit from All Nodes
behavior is a sequence number, which can be used by the monitoring system to
assist in correlation of multiple telemetry reports for the same flow. Note that there
are two ways to include the ‘source-inserted’” metadata in the Telemetry Report,
described below.

Sink Node: The sink node should report this source-inserted metadata to the
monitoring system along with the node’s own metadata. One example of a type of
metadata that would benefit from Sink Node behavior is a timestamp, which could
be used to determine the latency experienced by a packet from the source node to
the sink node.

None: This source-inserted metadata is meant to be consumed by other nodes, and
need not be included in any of the telemetry reports directed to the monitoring
system.

9p4-dtel-metadata-semantics, https://github.com/p4lang/p4-applications/blob/master/telemetry /code/models/p4-
dtel-metadata-semantics.yang

2020-11-11 20:14 In-band Network Telemetry 26

https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang
https://github.com/p4lang/p4-applications/blob/master/telemetry/code/models/p4-dtel-metadata-semantics.yang

5.9. INT-MX Header Format 5. INT HEADERS

— Source-Inserted Metadata Mutability:

* Source-Only: The source node inserts the metadata. Transit and sink nodes must
not change the value of this source-inserted metadata.

* Cumulative: Transit and sink nodes may update or replace the value of the source-
inserted metadata.

The amount of Domain Specific Metadata sent by each hop must be a multiple of 4 bytes,
determined from the DS Instruction, as described below.

e Optional Domain Specific ‘Source-Inserted’ Metadata: The metadata corresponding
to ‘source-inserted” DS Instruction bits follows the DS Instruction and the DS Flags fields in
the INT-MX header. The length of this field must be counted in the INT length field of the
INT shim header.

o Each INT node along the path that supports INT-MX (Source, Transit and Sink nodes) sends
its own metadata values, based on the Instruction Bitmap and DS Instruction in the INT-MX
header, as follows:

— Copy the Instruction Bitmap and DS Instruction from the INT-MX header to RepMdBits
and DSMdBits, respectively, in the Telemetry Report '°. Then modify RepMdBits and
DSMdBits as described in the following bullets.

— If INT-MX Instruction Bitmap bit 0 was set, clear RepMdBits bit 0 since the Node 1D
is already included in the common Telemetry Report Group Header that precedes the
individual reports.

— If a node is unable to provide a metadata value specified in the instruction bitmap
because its value is not available, or because it corresponds to a reserved bit, the node
must ensure that the corresponding bit in RepMdbits and/or DSMdBits is not set in the
Telemetry Report sent to the monitoring system.

— If the Domain Specific ID does not match any Domain ID known to this node, then the
node is required to either:

* Send the metadata corresponding to Instruction Bitmap and ensure that DSMdBits
is not set in the Telemetry Report, or
* Not send any of its own metadata to the monitoring systems.

— The INT node should make every effort to include domain specific ‘source-inserted’ meta-
data (from the INT-MX header) in the Telemetry Report, if that metadata’s Source-
Inserted Metadata Reporting Requirement is All Nodes, or Sink Node if this is the sink
node. Two ways to accomplish this are described, with differing implementation depen-
dent impact:

a. The truncated packet in the Individual Report Inner Contents includes the INT-MX
header with embedded ‘source-inserted’ metadata, or

b. The embedded ‘source-inserted’ metadata from the INT-MX header is copied into
the Variable Optional Domain Specific Metadata in the Individual Report Main

6 Telemetry Report Format Specification Version 2.0, May 2020.

2020-11-11 20:14 In-band Network Telemetry 27

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_v2_0.pdf

5.9. INT-MX Header Format 5. INT HEADERS

Contents. Note that in order to achieve this, the node must understand the Do-
main Specific ID and corresponding DSMdBits definition, so that it can place that
metadata in the proper order relative to other domain specific metadata. The corre-
sponding bits in DSMdBits must remain set so that the monitoring system (or any
consumer of the metadata) knows how to parse and use the data.

Although typically only one of these ways would be applied to a given packet at a specific
node, the combination of both of the above is allowed. The expectation is that for each
role (source, transit, sink), each INT node implementation will rely on one of these to
report ‘source-inserted’ metadata, while monitoring systems should support both.

If the ‘source-inserted’ metadata is not copied into the Variable Optional Domain Specific
Metadata, then the corresponding bits in DSMdBits must be cleared.

Due to backward compatibility implications, domain administrators need to be careful
when leaving some bits in DSMdBits reserved, with regard to defining any of those bits
as ‘source-inserted’ in the future.

— An INT node may be limited in the maximum number of instructions it can process
and/or maximum length of metadata it can gather for each data packet. An INT hop that
cannot process all instructions must send to the monitoring system the metadata it can
process, updating the RepMdBits and DSMdBits fields appropriately in the Telemetry
Report.

— The value to be placed in the MD Length field must be computed based on the resulting
values of RepMdBits and DSMdBits.

— The Variable Optional Baseline Metadata and Variable Optional Domain Specific Meta-
data in the Telemetry Report are populated based on the resulting values of RepMdBits
and DSMdBits.

e Summary of the field usage

— The INT Source must set the following fields:

* Ver, D and Instruction Bitmap.
* INT Source should set all reserved bits to zero.
* INT Source may set the Domain-specific fields.

— Intermediate transit nodes may set bits in the DS Flags field. Intermediate transit nodes
must not modify the Instruction Bitmap, Domain Specific ID and DS Instruction in the
INT-MX header.

o The length (in bytes) of the INT metadata sent to the monitoring system must always be a
multiple of 4B.

2020-11-11 20:14 In-band Network Telemetry 28

6. EXAMPLES

6. Examples

This section shows example INT Headers with two hosts (Host1 and Host2), communicating over a
network path composed of three network switches (Switchl, Switch2 and Switch3) as shown below.

==> packet P travels from Hostl to Host2 ==>
Hostl -------- > Switchl --------- > Switch2 --------- > Switch3 -------- > Host2

Detailed assumptions made for this example are as follows

o INT source requests each INT hop to insert node ID and queue occupancy (For the sake of
illustration we only consider node ID and queue occupancy being inserted at each hop. Queue
IDs are typically defined per port, hence in a real use-case queue occupancy is likely to be
collected along with egress interface ID)

o There are three INT nodes (hops) on the path, and all the nodes expose both metadata (node
ID and queue occupancy).

o The maximum number of hops (network diameter) is 8.

e The values of INT metadata header fields in this example are as follows:

— V —

- D=0 (acket is not a clone/copy, hence the Sink must not Discard)
— E =0 (Max Hop Count not exceeded)

- M = 0 (MTU not exceeded at any node)

— Per-hop Metadata Length = 2 (for node id & queue occupancy)

— Remaining Hop Count starts at 8, decremented by 1 at each hop

6.1. Example with INT-MD over TCP

We consider a scenario where hostl sends a TCP packet to host2. The ToR switch of hostl
(Switchl) acts as the INT source. It adds INT-MD headers and its own metadata in the packet.
Switch2 prepends its metadata. Finally, the ToR switch of host2 (Switch3) acts as the INT sink
and removes INT-MD headers before forwarding the packet to host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use the
value of 0x17 for IPv4.DSCP to indicate the existence of INT headers.

IP Header:

0 1 2 3
01234567890123456789012345678901
e S e L S At S e s S
| Ver=4 | IHL=5 | DSCP=0x17 |ECN| Length |
A T At S e
| Identification |Flags| Fragment Offset |

+ot—+—+

| Time to Live | Proto = 6 | Header Checksum
s e T S B s e e T S R St Tt s T
| Source Address |

.................................

.................................

2020-11-11 20:14 In-band Network Telemetry 29

6.1. Example with INT-MD over TCP 6. EXAMPLES

TCP Header:

0 1 2 3
01234567890123456789012345678901
s T T T et St o S B
| Source Port | Destination Port |

P T S S S S SO O SO S S S S SO S SO SO SO S SO T SO ST SO ST SO SO SO W S|
t—+-+—-+—-+-—-+-+

P T S T SO SO O SO SO SO SO SO SO SO SO SO SO SO SO S SO ST SO ST SO T SO SO SO AT SO
t—+-+—-+-+—-+-+—-+—-+-+-+

Data		UIAIPIRISIFI	
Offset	Reserved	RICISISIYII] Window	
	IGIKIHITIN	IN	

e S e S T T s o ot T S
| Checksum | Urgent Pointer |
e S S e s T T T T S

INT Shim Header for TCP/UDP, INT type is INT-MD (1) and NPT (Next Protocol Type) is zero:

0 1 2 3
01234567890123456789012345678901

|Type=1 | O IR Rl Length=7 | Reserved | DSCP IR RI

INT-MD Metadata Header and Metadata Stack, followed by TCP payload:

0 1 2 3
01234567890123456789012345678901
e S T Tt B Kt Tt Tt o S O g
| Ver=2 |0]0]O]| Reserved | HopML=2 |RemainingHopC=6 |
e s Tt Tt S At Tt St SR SN R S
[1001000000000000/00000000000000O0O]|
e s T S S B e Tt S R et S
[0000000000000000/00000000000000O0O0 O]
s T St T S S et et S SN RS S
| node id of hop2 |
e T s T St T S e S s et S S SR

| queue occupancy of hop2 |

| TCP payload |

s T s B L S T e T2

2020-11-11 20:14 In-band Network Telemetry 30

6.2. Example with INT-MX over TCP 6. EXAMPLES

6.2. Example with INT-MX over TCP

We consider a scenario where host1 sends a TCP packet to host2. The ToR switch of host1 (Switchl)
acts as the INT source. It adds INT-MX header in the packet. Switch2 processes the INT-MX
header. Finally, the ToR switch of host2 (Switch3) acts as the INT sink and removes INT-MX
header before forwarding the packet to host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use the
value of 0x17 for IPv4.DSCP to indicate the existence of INT headers.

IP Header:

0 1 2 3

01234567890123456789012345678901
e S o e e T e S s T G et T SN SR SN U RS S
| Ver=4 | IHL=5 | DSCP=0x17 |ECN| Length |
ottt bbb bbb bbb bbb bbb bbb+
| Identification |Flags| Fragment Offset |
e T
| Time to Live | Proto = 6 | Header Checksum
e T T T T T e T T o
| Source Address |
e T T s T T S s o T T SRR
| Destination Address |

td—t—t—t b=ttt b=t =t =ttt —d =ttt ==ttt — b=t =t =t —F ==t —+—+
TCP Header:

0 1 2 3

01234567890123456789012345678901
e T T T T e T S T et SR
| Source Port | Destination Port |
e S S e S T T o ot T S ae
| Sequence Number |
e e S e s e T T o o o o =
| Acknowledgment Number |

+t—F—t—t—t—t—t—+—+

Data		UIAIPIRISIFI		
Offset	Reserved	RICISISIYI	I]	Window
	IGIKIHITIN	N		

B e e T At T s S gt et
| Checksum | Urgent Pointer |

S S S A TS ST AT ST S ST S SRS S
INT Shim Header for TCP/UDP, INT type is INT-MX (3) and NPT (Next Protocol Type) is zero:

0 1 2 3
01234567890123456789012345678901
S S S S S S S SRS S
|Type=3 | 0 IR RI Length=3 | Reserved | DSCpP IR RI

tt—t—t—t—t—t—t—t—t—t =ttt =ttt bttt -ttt —b—t—t—t—t—t—+—+

2020-11-11 20:14 In-band Network Telemetry 31

6.3. Example with new UDP header and INT-MD inserted before TCP 6. EXAMPLES

INT-MX Header, followed by TCP payload:

0 1 2 3
01234567890123456789012345678901
tot—t—t b=ttt bttt =ttt —t—t—t =t =t —b b=t =t~ ==t —b—t—+—+

| Ver=2 |0] Reserved |

| TCP payload |

s T B T St S T s St

6.3. Example with new UDP header and INT-MD inserted before TCP

As before we consider a scenario where hostl sends a TCP packet to host2. The ToR switch of
hostl (Switchl) acts as the INT source. It adds a new UDP header, INT-MD headers and its own
metadata in the packet. Switch2 prepends its metadata. Finally, the ToR switch of host2 (Switch3)
acts as the INT sink and removes the UDP and INT-MD headers before forwarding the packet to
host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use
INT TBD for UDP.Destination Port to indicate the existence of INT headers.

IP Header:

0 1 2 3

01234567890123456789012345678901
e e e T T s T e S o Y e o
| Ver=4 | IHL=5 | DSCP |ECN| Length |
e S S e S T T s o ot S S
| Identification |Flags| Fragment Offset |

tt—t—t—t—t—t—t—t—t—t—t—t—t—t—t—dt—t =ttt =ttt -ttt —t—t—t—t—+—+

| Time to Live | Proto = 17 | Header Checksum

S T S S ST ST T ST S ST W S S WS S O s
| Source Address |
S S S ST T AT ST S ST S ST S ST WS SRS e
| Destination Address |

+t—+—+

UDP Header:

0 1 2 3

01234567890123456789012345678901
s T S S S A e S S S B B ot T S
| Source Port | Destination Port = INT_TBD |
s S S St S S e S T T T S S S S
| Length | Checksum |

tt—b—t—t—t—t—t—+—+

2020-11-11 20:14 In-band Network Telemetry 32

6.4. Example with new UDP header and INT-MX inserted before TCP 6. EXAMPLES

INT Shim Header for UDP, INT type is INT-MD (1) and NPT (Next Protocol Type) is 2 indicating
another 1.4 header follows INT. IP proto is 6 to indicate that TCP follows INT:

0 1 2 3
01234567890123456789012345678901
tt—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt =ttt —t—t—t—t—t—t—t—t—+—+
6 |

+t—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt =ttt —t—t—F—t—t—t—t—t—+—+

INT-MD Metadata Header and Metadata Stack, followed by TCP header:

|Type=1 | 2 IR Rl Length=7 | Reserved | IP proto

0 1 2 3
01234567890123456789012345678901

.................................

.................................

[1t001000000000000/00000000000000O0 O]
s e e R
[0000000000000000/00000000000000O0 O]
e e R
| node id of hop2 |
e st B e e T
queue occupancy of hop2
B e B T e L e

node id of hopl

+ +
+ +
e e S s s T T T T
| queue occupancy of hopl |
e e S e s T T e T T
| TCP header |
+ +

—t—F—t—t—

6.4. Example with new UDP header and INT-MX inserted before TCP

As before we consider a scenario where hostl sends a TCP packet to host2. The ToR switch of
hostl (Switchl) acts as the INT source. It adds a new UDP header and a new INT-MX header
in the packet. Switch2 processes the INT-MX Header. Finally, the ToR switch of host2 (Switch3)
acts as the INT sink and removes the UDP and INT-MX headers before forwarding the packet to
host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use
INT TBD for UDP.Destination Port to indicate the existence of INT headers.

2020-11-11 20:14 In-band Network Telemetry 33

6.4. Example with new UDP header and INT-MX inserted before TCP 6. EXAMPLES

IP Header:

0 1 2 3
01234567890123456789012345678901

tot—t—t b=ttt bttt =ttt —t—t—t =t =t —b b=t =t~ ==t —b—t—+—+

| Ver=4 | IHL=5 | DSCP |ECN| Length |
Identification |Flags| Fragment Offset
| Time to Live | Proto = 17 | Header Checksum

| Source Address |
e s s T T e e T B
| Destination Address |

B s s T Tt e B Tt St o S T e e Tt
UDP Header:

0 1 2 3
01234567890123456789012345678901
s Tt T T B . G e S B s o SRS
| Source Port | Destination Port = INT_TBD |

P T S S S S S SO O SO S SO S S SO S SO SO SO S SO T SO ST SO ST SO SO SO W S|
t—+-+—-+-+—-+—-+—-+-+

P T S T S S S SO O SO SO SO SO S SO S SO SO SO S SO S SO ST SO O SO SO SO WY SO |
t—+-+—-+-+—-+—-+—-+-+

INT Shim Header for UDP, INT type is INT-MX (3) and NPT (Next Protocol Type) is 2 indicating
another L4 header follows INT. IP proto is 6 to indicate that TCP follows INT:

0 1 2 3
01234567890123456789012345678901

P T S T S S SO S SO S SO S SO SO SO SO SO S S SO ST SO T SO T SO AT SO T T
t—+-+—-+-+—-+-+—-+—-+-+-+

|Type=3 | 2 IR Rl Length=3 | Reserved | IP proto = 6 |

P T S T SO SO O SO SO SO SO SO SO SO SO SO SO SO SO S SO ST SO T SO T SO NSO SO W T
t—+-+—-+-+—-+-+—+—-+-+-+

INT-MX Header, followed by TCP header:

0 1 2 3
01234567890123456789012345678901
s T S Tt Tt St St S B et Tt S S R S
| Ver=2 |0 Reserved |
s T S e Tt St St o B e Rt et St S
[1001000000000000/0000000000000O0O0 O]
dot—t—t—t =ttt bttt =ttt bt =t =ttt bbb —t—t ==t —b—t—+—+
[0000000000000000/0000000000O00O0O0O0 O]

P T S S S S SO SO S S S S SO S SO SO SO S SO T SO T SO ST SO SO SO W S|
t—+-+—-+—-+—-+-—-+-+

2020-11-11 20:14 In-band Network Telemetry 34

6.5. Example with INT-MD in-between UDP header and UDP payload 6. EXAMPLES

6.5. Example with INT-MD in-between UDP header and UDP payload

In this scenario hostl sends a UDP packet to host2. The ToR switch of hostl (Switchl) acts as
the INT source. It alters the UDP destination port to INT TBD, inserts INT-MD headers before
the UDP payload. Switch2 prepends its metadata. Finally, the ToR switch of host2 (Switch3) acts
as the INT sink and removes the INT-MD headers and restores the original UDP destination port
before forwarding the packet to host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use
INT TBD for UDP.Destination Port to indicate the existence of INT headers.

IP Header:

0 1 2 3
01234567890123456789012345678901

e e s s T S et St S

| Ver=4 | IHL=5 | DSCP |ECN| Length |
Identification |Flags| Fragment Offset
| Time to Live | Proto = 17 | Header Checksum

.................................

| Source Address |
e s s T T s e T B T T
| Destination Address |

+—t—t—t—t—t—t—t—t -ttt -ttt -ttt -ttt bttt —F—t—t—+—+
UDP Header:

0 1 2 3
01234567890123456789012345678901
s St T T . e e S B s ot SRS
| Source Port | Destination Port = INT_TBD |
s et T T B T et St o B B Rt ot o SRS
| Length | Checksum |

.................................

INT Shim Header for UDP, INT type is INT-MD (1) and NPT (Next Protocol Type) is 1 indicating
UDP payload follows the INT. The original port number XYZ is stored in the shim header:

0 1 2 3
01234567890123456789012345678901

.................................

|Type=1 | 1 IR Rl Length=7 UDP port = XYZ

.................................

2020-11-11 20:14 In-band Network Telemetry 35

6.6. Example with INT-MX in-between UDP header and UDP payload 6. EXAMPLES

INT-MD Metadata Header and Metadata Stack, followed by UDP payload:

0 1 2 3
01234567890123456789012345678901
tot—t—t b=ttt bttt =ttt —t—t—t =t =t —b b=t =t~ ==t —b—t—+—+

| Ver=2 |0]0]0]| Reserved | HopML=2 |RemainingHopC=6|

P T S T SO SO O SO SO SO SO SO SO SO SO SO SO SO S S SO ST SO T SO T SO SO SO AT SO
t—+-+—-+-+—-+-+—+—-+-—-+-+

| node id of hop2 |
e e T S s e S O o o o o S
| queue occupancy of hop2 |
s e e e s T Tt T T T Tt
| node id of hopl |
e T e s et Tl s ot ot TS
| queue occupancy of hopl |
s et e e s i T T T T s
| UDP payload |

+ot—+—+

6.6. Example with INT-MX in-between UDP header and UDP payload

In this scenario host1 sends a UDP packet to host2. The ToR switch of hostl (Switchl) acts as the
INT source. It alters the UDP destination port to INT_TBD, inserts INT-MX header before the
UDP payload. Switch2 processes the INT-MX header. Finally, the ToR switch of host2 (Switch3)
acts as the INT sink and removes the INT-MX headers and restores the original UDP destination
port before forwarding the packet to host2.

Below is the packet received by INT sink Switch3, starting from the IPv4 header. We use
INT TBD for UDP.Destination Port to indicate the existence of INT headers.

IP Header:

0 1 2 3
01234567890123456789012345678901
tot—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt —t—t—t—t—t—t—t—+
| Ver=4 | IHL=5 | DSCP |ECN| Length |
tot—t—t—t—t—t—t—t—t—t—t—t bttt —t—t—t—t bttt —t—t—t—t—t—t—t—+
| Identification |Flags| Fragment Offset |
tot—t—t—t—t bttt bttt bttt bttt bttt bttt —t—+

| Time to Live | Proto = 17 | Header Checksum
tot—t—t—t—t ottt bbbttt bttt bttt — bttt —t—+

| Source Address |

2020-11-11 20:14 In-band Network Telemetry 36

6.7. Example with new IP and UDP headers and INT-MX inserted before IPSec 6. EXAMPLES

UDP Header:

0 1 2 3

01234567890123456789012345678901
s T T T et St o S B
| Source Port | Destination Port = INT_TBD |

.................................

.................................

INT Shim Header for UDP, INT type is INT-MX (3) and NPT (Next Protocol Type) is 1 indicating
UDP payload follows the INT. The original port number XYZ is stored in the shim header:

0 1 2 3
01234567890123456789012345678901

.................................

|Type=3 | 1 IR Rl Length=3 | UDP port = XYZ |

tot—t—t—t—t—t—t—t bttt =ttt bt -ttt =ttt —t—t—t =ttt —t—+
INT-MX Header, followed by UDP payload:

0 1 2 3
01234567890123456789012345678901
s T S S Rkt T Tt St St S B e S
| Ver=2 |0 Reserved |
e s s e B s S S S Tt
[1001000000000000/0000000000000O0O0 O]
e B e s B e St S L B e o T

[0000000000000000/0000000000000O0O0 O]

.................................

6.7. Example with new IP and UDP headers and INT-MX inserted before IPSec

We consider a scenario where hostl sends an IPSec transport mode packet to host2. The ToR
switch of hostl (Switchl) acts as the INT source. It adds new IP and UDP headers and a new
INT-MX header in the packet. Switch2 processes the INT-MX Header. Finally, the ToR switch of
host2 (Switch3) acts as the INT sink and removes the UDP and INT-MX headers before forwarding
the packet to host2.

Below is the packet received by INT sink Switch3, starting from the outer IPv4 header. We use
INT TBD for UDP.Destination Port to indicate the existence of INT headers.

2020-11-11 20:14 In-band Network Telemetry 37

6.7. Example with new IP and UDP headers and INT-MX inserted before IPSec 6. EXAMPLES

IP Header:

0 1 2 3
01234567890123456789012345678901

tot—t—t b=ttt bttt =ttt —t—t—t =t =t —b b=t =t~ ==t —b—t—+—+

| Ver=4 | IHL=5 | DSCP |ECN| Length |
Identification |Flags| Fragment Offset
| Time to Live | Proto = 17 | Header Checksum

P T S T SO SO O SO SO SO SO SO SO SO SO SO SO SO SO S SO ST SO ST SO T SO SO SO AT SO
t—+-+—-+-+—-+-+—-+—-+-+-+

| Source Address |
e s s T T e e T B
| Destination Address |

B s s T Tt e B Tt St o S T e e Tt
UDP Header:

0 1 2 3
01234567890123456789012345678901
s Tt T T B . G e S B s o SRS
| Source Port | Destination Port = INT_TBD |

P T S S S S S SO O SO S SO S S SO S SO SO SO S SO T SO ST SO ST SO SO SO W S|
t—+-+—-+-+—-+—-+—-+-+

P T S T S S S SO O SO SO SO SO S SO S SO SO SO S SO S SO ST SO O SO SO SO WY SO |
t—+-+—-+-+—-+—-+—-+-+

INT Shim Header for UDP, INT type is INT-MX (3) and NPT (Next Protocol Type) is 2 indicating
an IP protocol value specifies the header that follows INT. IP proto is 4 to indicate that an inner
IPv4 header follows INT:

0 1 2 3
01234567890123456789012345678901
+t—+—+
4 |

+ot—+—+

INT-MX Header:

|Type=3 | 2 IR R Length=3 | Reserved | IP proto

0 1 2 3
01234567890123456789012345678901
R e S R T e e T e T ot SR SN S
| Ver=2 |0]| Reserved |
ottt bbb bbb bbb bbb bbb bbb+
[1001000000000000/0000000000000O0O0O]|
ottt bbb bbb bbb bbb bbb bbb+
|[0000000000000000/I000000000000O0O0O0 O]

+t—F—t—t—t—t—t—+—+

2020-11-11 20:14 In-band Network Telemetry 38

6.8. Example with INT-MD over IPv4/GRE (Original packet IPv4) 6. EXAMPLES

Inner IP Header followed by AH Header and IP Payload:

0 1 2 3
01234567890123456789012345678901

tot—t—t b=ttt bttt =ttt —t—t—t =t =t —b b=t =t~ ==t —b—t—+—+

| Ver=4 | IHL=5 | DSCP |ECN| Length |
Identification |Flags| Fragment Offset
| Time to Live | Proto = 51 | Header Checksum

.................................

Source Address
B e e et B e e e

Destination Address

AH Header
B e T s T T s s S Tt o S B B s St Tt

IP Payload

+ = o+ = o+ = o+ —

|
+
|
—d—t—t—t—t—t—t—t—t—t—t—t—t—t bttt -ttt —t—t—t—t—t—t—t—F—t—+—+
|
+
|
+

—t bttt =ttt —F—t—+—

6.8. Example with INT-MD over IPv4/GRE (Original packet IPv4)

In this scenario hostl sends an IPv4 packet to host2. The ToR switch of hostl (Switchl) acts
as the INT source. It does IPv4/GRE encapsulation and inserts INT-MD headers before the
inner (original) IPv4. Switch2 prepends its metadata. Finally, the ToR switch of host2 (Switch3)
acts as the INT sink and removes the INT-MD headers and decapsulates outer IPv4/GRE before
forwarding the packet to host2.

Below is the packet received by INT sink Switch3, starting from the outer IPv4 header. The G
bit of INT shim is set to 1 to indicate that GRE was inserted by the INT source.

2020-11-11 20:14 In-band Network Telemetry 39

6.9. Example with INT-MX over IPv4/GRE (Original packet IPv4) 6. EXAMPLES

0 1 2 3
01234567890123456789012345678901

s et T T s T T S B S s Tt Tt S S S
| Ver=4 | IHL=5 | DSCP |ECN| Length | o
Fotmt—t—tot—t—t—t bbbttt bbbttt —t—t—t—t—t—t—t—t—t—t—+—+ U
| Identification |Flags| Fragment Offset | T
s T o T s e T T T Tt ot e ot S ST)
| Time to Live | Proto = 0x2F | Header Checksum | R

S S S T ST S ST ST ST S A S S Sy |
| (Outer) Source Address | I
S S S S Y S ST AT ST S S ST ST R -)
| (Outer) Destination Address [
S S S S S T A S S S S ST ST QS
ICIRIK|S|s|Recur] Flags | Ver | Protocol Type = TBD_INT |
S S S S T S S S S SN |
| Checksum (optional) | Offset (Optional) [

+ot—+—+

G
| Key (Optional) | R
Hot—t—dt—t—t—t—t—t—t bttt -ttt —t—t—t—t—t—t—t—+—+—+—+—+ E

| Sequence Number (Optional) I

| Type=1 |1| Rsvdl Length=7 | Protocol = 0x0800 [

P T S T S SO O SO SO SO SO SO S SO SO SO SO SO SO S SO ST SO T SO T SO AT SO W T
t—+-+—-+-+—-+-+—+—-+-+-+

| Ver=2 |0|0]O]| Reserved | HopML=2 |RemainingHopC=6| |
ottt ottt bttt bttt bttt bttt b=ttt |
[1001000000000000/000000000000000O0O0[|
R e T s T e s et S e e o e |
[0000000000000000/I00000000000000O0O0] I
ottt bttt bttt bttt bt — bt =ttt =t —t—t—t—+—+ N
| node id of hop2 | T
B e S T s T o S e Ea St S e ot |
| queue occupancy of hop2 [
B o S T T St T B et S it et e St TR SR |
| node id of hopl [
R T e S T s T o S e et St TN R |
| queue occupancy of hopl [
R T B K T T s T B B e Bttty S D S
| Inner IP Header + Payload + Pad (L3/ESP...) |

e e s s S S B e et St S S

6.9. Example with INT-MX over IPv4/GRE (Original packet IPv4)

In this scenario host1 sends an IPv4 packet to host2. The ToR switch of hostl (Switchl) acts as
the INT source. It does IPv4/GRE encapsulation and inserts INT-MX header before the inner
(original) TPv4. Switch2 processes the INT-MX header. Finally, the ToR switch of host2 (Switch3)

2020-11-11 20:14 In-band Network Telemetry 40

6.10. Example with INT-MD over IPv4/GRE (Original packet CE or IP)

6. EXAMPLES

acts as the INT sink and removes the INT-MX header and decapsulates outer IPv4/GRE before

forwarding th

e packet to host2.

Below is the packet received by INT sink Switch3, starting from the outer IPv4 header. The G

bit of INT shim is set to 1 to indicate that GRE was inserted by the INT source.

0

1 2

3

01234567890123456789012345678901

e o S T T s T R Tt Tt S S
| Ver=4 | IHL=5 | DSCP |ECN| Length | o
ottt bttt b=ttt b=ttt =ttt =ttt b=t —t—t—t—t—t—+—+ [
| Identification |Flags| Fragment Offset | T
Fot—+—+—+—+—+—+ E
| Time to Live | Proto = O0x2F | Header Checksum | R
R T e S T Tt o S e S s et T S e S |
| (Outer) Source Address | I
Fot—+—t—+—+—+—+ P
| (Outer) Destination Address [
s S B e s At S S b—+<—+
ICIRIKIS|s|Recur| Flags | Ver | Protocol Type = TBD_INT [
bttt —t—t—t—t—t b=ttt ottt -ttt b=ttt -ttt —t—+—1 b=+ |

Checksum (optional) Offset (Optional) [
bot—t =ttt =ttt bttt bttt -ttt b=ttt =ttt —t—+—1 t-+ G
| Key (Optional) | R
tt—+—t—+t—+—+-+—+—+ E
| Sequence Number (Optional) [
R e T S T o S s St TR S B R e |
| Routing (Optional) [
i e S T Tt S B R Tt Rt S S Bt T e
| Type=3 |1| Rsvdl| Length=3 | Protocol = 0x0800 [
B e S T s T o S s S E ot o S |
| Ver=2 |0| Reserved I I
ottt bttt bttt bttt b=ttt =ttt —t—t—t—t—t—+—+ N
[1001000000000000/0000000000000O0OO0| T

+t—+—+
[0000000000000000/0000000000000O0O0 O]

+ot—+—+<—+

| I

nner IP Header + Payload + Pad (L3/ESP...)

s e s B e S e et St S A S

6.10. Example with INT-MD over IPv4/GRE (Original packet CE or IP)

In this scenario host1 sends an IPv4 packet to host2. The ToR switch of host1 (Switchl) acts as the
INT source. It adds an Ethernet (L2) header, does IPv4/GRE encapsulation and inserts INT-MD
headers before the inner (original) packet that starts with an Ethernet header. Switch2 prepends
its metadata. Finally, the ToR switch of host2 (Switch3) acts as the INT sink and removes the
INT-MD headers and decapsulates outer L2 header, outer IPv4/GRE before forwarding the packet

to host2.

2020-11-11 20

14 In-band Network Telemetry

41

6.10. Example with INT-MD over IPv4/GRE (Original packet CE or IP)

6. EXAMPLES

Below is the packet received by INT sink Switch3, starting from the outer Ethernet header.
The G bit of INT shim is set to 1 to indicate that GRE was inserted by the INT source.

0

1

2

3

01234567890123456789012345678901

tt—t—t—t—t—t—t—t—t—t—t—t—t bttt bttt -ttt bt —t—t—t—F—+—+<—+

| Ethernet Header (L2) |
e e S T T s T s Tt Tt S E S s
| Ver=4 | IHL=5 | DSCP |ECN| Length | 0
ottt bttt b=ttt b=ttt =ttt =ttt b=t —t—t—t—t—t—+—+ [
| Identification |Flags| Fragment Offset | T
Fot—+—+—+—+—+—+ E
| Time to Live | Proto = O0x2F | Header Checksum | R
R T e S T Tt o S e S s et T S e S |
| (Outer) Source Address | I
Fot—+—t—+—+—+—+ P
| (Outer) Destination Address [
bt =t =ttt =ttt bttt b=ttt bttt b=ttt F<—+
ICIRIKIS|s|Recur| Flags | Ver | Protocol Type = TBD_INT [
e S B s S St S B S e S +

Checksum (optional) Offset (Optional) [
bt b=ttt =ttt bttt bttt bttt bttt + G
| Key (Optional) | R
tt—+—t—+t—+—+-+—+—+ E
| Sequence Number (Optional) [
R e T S T o S s St TR S B R e |
| Routing (Optional) [
i e S T Tt S B R Tt Rt S S Bt T e
| Type=1 |1| Rsvdl| Length=7 | Protocol = 0x6558 [
B e S T s T o S s S E ot o S |
| Ver=2 |0|0]O]| Reserved | HopML=2 |RemainingHopC=6 |

+t—+—+
[1001000000000000/0000000000000O0O0O]|
+t—+—+
[0000000000000000/0000000000000O0O0 O]

+t—+—+

node id of hop2

R st e S T
| queue occupancy of hop2 |
node id of hopl |

queue occupancy of hopl |

| Payload (Original Packet starting with an Ethernet header) |
B L At S e e

2020-11-11 20:14

In-band Network Telemetry

42

6.11. Example with INT-MX over IPv4/GRE (Original packet CE or IP) 6. EXAMPLES

6.11. Example with INT-MX over IPv4/GRE (Original packet CE or IP)

In this scenario host1 sends an IPv4 packet to host2. The ToR switch of host1 (Switchl) acts as the
INT source. It adds an Ethernet (L2) header, does IPv4/GRE encapsulation and inserts INT-MX
header before the inner (original) packet that starts with an Ethernet header. Switch2 processes
the INT-MX header. Finally, the ToR switch of host2 (Switch3) acts as the INT sink and removes
the INT-MX header and decapsulates outer L2 header, outer IPv4/GRE before forwarding the
packet to host2.

Below is the packet received by INT sink Switch3, starting from the outer Ethernet header.
The G bit of INT shim is set to 1 to indicate that GRE was inserted by the INT source.

0 1 2 3
01234567890123456789012345678901
e B S S St S B o e Et O S

| Ethernet Header (L2) |

e S et T Tt T T St S e ot
| Ver=4 | IHL=5 | DSCP |ECN| Length | o
bt —t—t—t—t—t bttt —t—t—t bttt —t—t—t—t bt —t—t—t—t—t—t—t—+—+ U

Identification |Flags| Fragment Offset | T
bt —t—t—t—t—t—t—t—t—t—t—t—t—t—d—t—t—t—t—t—t—t—t—t—t—t—+—+—+—+—+—+ E
| Time to Live | Proto = O0x2F | Header Checksum | R
s S S S St T B S St S S S s et S |
| (Outer) Source Address | I
tot—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—dt—t—t—t—t—t—t—t—t—+—+—+—+ P

| (Outer) Destination Address [
tot—t—t—t—t—t bttt bbbttt —t bbbttt =ttt bt —t—t—+<—+
ICIRIKIS|s|Recur| Flags | Ver | Protocol Type = TBD_INT [
tot—t—t—t—t—t—t—t—t—t—t bbbttt bttt ottt —t—t—t—t—t—t—t—+ |
| Checksum (optional) | Offset (Optional) [
tot—+—t—t—t—t—+ G
| Key (Optional) | R
tot—+—+—+—+—+-+ E
| Sequence Number (Optional) [
tot—t—t—t—t—t—t—t—t—t—t—t bttt —t—t bttt —t—t—t—t—t—t—t—t—t |
| Routing (Optional) [
tot—t—t—t bttt bttt bttt —t—t bbbttt —t bttt —t—+<—+
| Type=3 |1| Rsvd| Length=3 | Protocol = 0x6558 [
tot—t—t—t—t bttt bttt bttt bttt bttt —t—t—t—t—t—t—t |

| Ver=2 |0] Reserved |

[0000000000000000/00000000000000O0CO0O| |
s T S A T At B B st O
| Payload (Original Packet starting with an Ethernet header) |

+—t—t—t—t -ttt -ttt -ttt -ttt -ttt bttt —F—t—t—+—+

2020-11-11 20:14 In-band Network Telemetry 43

6.12. Example with INT-MD over VXLAN GPE 6. EXAMPLES

6.12. Example with INT-MD over VXLAN GPE

We now consider a scenario where Hostl and Host2 use VXLAN encapsulation. Hostl acts as
VXLAN tunnel endpoint and INT source, inserts VXLAN and INT-MD headers with instruction
bits corresponding to the network state to be reported at intermediate switches. In this example,
Host1 itself does not insert any INT metadata. Intermediate switches parse through VXLAN header
and populate the INT metadata. Host2 acts as INT sink and VXLAN tunnel endpoint, removes
INT-MD and VXLAN headers.

The packet headers received at Host 2 are as follows, starting with the VXLAN GPE header
(encapsulating ethernet, IP and UDP headers are not shown here):

VXLAN GPE Header:

0 1 2 3

01234567890123456789012345678901
ottt -ttt —F -t —F—F—+—F—F—F—F -t —F—F -+~ —F—F+—F+—+—+
IRIRIVer|1l1]0]0O] Reserved | NextProto=0x82]|
ottt -ttt —F—F—F—F—F—F—F+—F—F—F—F—t—F—F—F—F -+ —F—F—F+—+—+
| VXLAN Network Identifier (VNI) | Reserved |

B s Tt S R T T ot T S s T s s ot Tt TS
INT Shim Header for VXLAN-GPE, INT-MD type:

0 1 2 3
01234567890123456789012345678901

| Type=1 |Rsvd=0 | Length=9 |0l Reserved | NextProto=0x3 |

INT-MD Metadata Header and Metadata Stack:

0 1 2 3
01234567890123456789012345678901
L Rt at B A
| Ver=2 |0]0]O]| Reserved | HopML=2 |RemainingHopC=5]|
s T at B Bt S
[1001000000000000/0000000000000O0O0O0 O]
R e L Rt T e A e
[0000000000000000/0000000000000O0O0O0 O]

P S S S S S SO S SO S SO S S SO S SO SO SO S SO S SO T SO ST SO SO SO W SO |
t—+-+—-+—-+—-+-—-+-+

| node id of hop2 |
e e B T e e e e T Tt T S
| queue occupancy of hop2 |
s e o e s o T T o o
| node id of hopl |
e e o s Tt Tl T s ot T et o SR e

| queue occupancy of hopl |

2020-11-11 20:14 In-band Network Telemetry 44

6.13. Example with INT-MX over VXLAN GPE 6. EXAMPLES

.................................

6.13. Example with INT-MX over VXLAN GPE

We now consider a scenario where Hostl and Host2 use VXLAN encapsulation. Hostl acts as
VXLAN tunnel endpoint and INT source, inserts VXLAN and INT-MX header with instruction
bits corresponding to the network state to be reported at intermediate switches. In this example,
Host1 itself does not send any metadata to the monitoring system. Intermediate switches parse
through VXLAN header, process the INT-MX header and send the INT metadata requested to the
monitoring system. Host2 acts as INT sink and VXLAN tunnel endpoint, removes INT-MX and
VXLAN headers.

The packet headers received at Host 2 are as follows, starting with the VXLAN GPE header
(encapsulating ethernet, IP and UDP headers are not shown here):

VXLAN GPE Header:

0 1 2 3
01234567890123456789012345678901

.................................

IRIRIVer|1]1l0]0]| Reserved | NextProto=0x82]|
s e Tt T S i e T Tt S e B S T T
| VXLAN Network Identifier (VNI) | Reserved

B e T S e T T T S s o F SN BRI
INT Shim Header for VXLAN-GPE, INT-MX type:

0 1 2 3
01234567890123456789012345678901
s B e T i Sttt B B
| Type=3 |Rsvd=0 | Length=3 |0] Reserved | NextProto=0x3 |

.................................

INT-MX Header:

0 1 2 3
01234567890123456789012345678901
S S S S S S S S SRS S
| Ver=2 |0l Reserved |
N S S S S S S S S SRS
[1001000000000000/0000000000000O0O0O]|
S S S S SR SRS
[0000000000000000/0000000000O0O0OGO0O0 O]

+ot—+—+

2020-11-11 20:14 In-band Network Telemetry 45

6.14. Example with INT-MD over Geneve 6. EXAMPLES

6.14. Example with INT-MD over Geneve

Finally, we consider a scenario where Hostl and Host2 use Geneve encapsulation. Hostl acts as
Geneve tunnel endpoint and INT source, inserts Geneve and INT-MD headers with instruction
bits corresponding to the network state to be reported at intermediate switches. In this example,
Host1 itself does not insert any INT metadata. Intermediate switches parse through Geneve header
and populate the INT metadata. Host2 acts as INT sink and Geneve tunnel endpoint, removes
INT-MD and Geneve headers.

Following are the Geneve and INT Headers attached to the packet received by Host2.

Geneve Header:

0 1 2 3
01234567890123456789012345678901
et B St S B S At et St L
|Ver| OptLen=9 |0IC| Rsvd. | Protocol Type=EtherType

P S S S S SO S SO S SO S S SO S SO SO SO S SO T SO ST SO ST SO SO SO W SO
t—+-+—-+—-+—-+—-+-+

P T S S S S S SO O SO SO SO SO S SO S SO SO SO S SO T SO T SO OSSO SO SO WY S|
t—+-+—-+-+—-+—-+—-+-+

Geneve Option for INT-MD type:

0 1 2 3

01234567890123456789012345678901
e S Tt Tl e T T Tt S S B It 8
| Option Class=0x0103 | Type=1 IRIRIR] Len=9 |

B o S T Tt s Tt At s s T B e B e s
INT-MD Metadata Header and Metadata Stack:

0 1 2 3
01234567890123456789012345678901

| Ver=2 |0|0]O]| Reserved | HopML=2 |RemainingHopC=5]|
St s Eat e S e e S
[1001000000000000/0000000000000O0O0 O]
s T S s T S S s Tt T O s T St S S
[0000000000000000/000000000000O0O0O0 O]
s T S T Bt T S s Tt et SO S S S
| node id of hop3 |
e e S S S et St S S S
| queue occupancy of hop3 |
oottt bt —t—t—t bbbttt bbbttt bttt —t—t—+
| node id of hop2 |
ottt bttt ottt bbbttt bbbttt bttt —t—t—+
| queue occupancy of hop2 |
et B Bt Bt Bt e
| node id of hopl |
et B e T S st B
| queue occupancy of hopl |

P S S S S S SO S SO S ST S S SO S SO S SO S SO T SO ST SO ST SO SO SO W T
t—+-+—-+—-+—-+-+

2020-11-11 20:14 In-band Network Telemetry 46

6.15. Example with INT-MX over Geneve

6. EXAMPLES

6.15. Example with INT-MX over Geneve

Finally, we consider a scenario where Hostl and Host2 use Geneve encapsulation. Hostl acts as
Geneve tunnel endpoint and INT source, inserts Geneve and INT-MX headers with instruction
bits corresponding to the network state to be reported at intermediate switches. In this example,
Host1 does not send INT metadata to the monitoring system. Intermediate switches parse through
Geneve header, process the INT-MX header and send the INT metadata requested to the monitoring
system. Host2 acts as INT sink and Geneve tunnel endpoint, removes INT-MX and Geneve headers.

e e s s T S et St S

Geneve Header:

0

1 2

Following are the Geneve and INT Headers attached to the packet received by Host2.

3

01234567890123456789012345678901

Ver| OptLen=9 |0|C]| Rsvd. | Protocol Type=EtherType

P S S T S S S R SO W SO SO SO SO S SO SO SO S

+—+—+

PRI

t—+-+-+-+-+-+—-+-+—-+-+—-+-+—-+F+-+—+—-+—-+—-+-+

+—+—+

Geneve Option for INT-MX type:

+t—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt =ttt —t—t—F—t—t—t—t—t—+—+

+t—+—+

0

1 2

01234567890123456789012345678901

Option Class=0x0103 | Type=3

INT-MX Header:

0

1 2

IRIRIR| Len=3 |

3

01234567890123456789012345678901

| Ver=2 0] Reserved

s T e A T L St T e

[1001000000000000/0000000000000O0O0O0 O]

tt—+—+

[0000000000000000/0000000000000O0O0 O]

tt—t—t—t—t—t—t—t—t—t—t—t—t—t—t bttt =ttt —t—t—b—t—t—t—t—t—+—+

2020-11-11 20:14

In-band Network Telemetry

47

6.16. Example with INT-MX including domain specific source-inserted metadata 6. EXAMPLES

6.16. Example with INT-MX including domain specific source-inserted metadata

We consider a scenario similar to Section 6.4, with the addition of ‘source-inserted’ metadata that
consists of a Sequence Number with current value 15 and a Flow ID with current value 0x12345678.
The Domain Specific ID value is Oxabced.

INT Shim Header for UDP, INT type is INT-MX (3) and NPT (Next Protocol Type) is 2
indicating another 1.4 header follows INT. IP proto is 6 to indicate that TCP follows INT:

0 1 2 3
01234567890123456789012345678901
ottt =ttt bttt bt —t =ttt — b=ttt — b=ttt —+
|Type=3 | 2 IR RI Length=5 | Reserved | IP proto = 6 |

s S S St S S S T T T o S S S e St S
INT-MX Header, followed by TCP header and payload:

0 1 2 3
01234567890123456789012345678901
s St T T . G e S B s o S TS
| Ver=2 |0] Reserved |
s S T T T et St o S B B e ot RS

[1001000000000000/101010111100110 1]

| Sequence Number (assigned by source node) |
[00000000000000000000000000001 11 1]
B e e B St T e ot e e e B |
| Flow ID (assigned by source node) |
[0001001000110100010101100111100 0|
B e B e B At St St et S oY |
| TCP header |

+t—+—+

2020-11-11 20:14 In-band Network Telemetry 48

6.17. Example with INT-MD including domain specific source-only metadata 6. EXAMPLES

6.17. Example with INT-MD including domain specific source-only metadata

We consider a scenario where Hostl is on a wireless network behind a NAT and its identity can
not be confirmed by port location. Hostl does not support INT. The gateway acts at the INT
source, inserting the header and the MAC address of Hostl. Intermediate switches populate the
INT metadata while preserving the source-only domain specific metadata. This example can work
with any of the above encapsulation methods such as UDP encapsulation.

The MAC address from hostl is copied from the source address in the Ethernet frame. The
MAC is a 6 byte id. Since the INT metadata header is measured in blocks of 4 bytes, the last
2 bytes are reserved. For example if a source device’s MAC address is “a6:1a:f6:b1:64:7d”, the
source-only INT metadata would be 0xA61AF6B1647d0000.

Following is the INT-MD Header attached to the packet transmitted by the hop2 switch.

Details of the Transparent Security domain specific model can be accessed in the Transparent
Security INT header reference definition 7.

INT Metadata Header and Metadata Stack. The Domain Specific ID is 0x5453 (‘TS’ in ascii),
bit 0 is set in the domain bitmap to indicate the 16 bit source-only device source and bit 1 is set
in the DS Flags to indicate that this was set by the gateway:

0 1 2 3
01234567890123456789012345678901
A Rt S e
| Ver=2 |0]0]O] Reserved | HopML=1 |RemainingHopC=5]|
e e T s s gt et
[1000000000000000/010101000101001 1]
e L R At S S S
[1000000000000000/01 000000000000 O0 O]

.................................

.................................

.................................

| node id of gateway |
s B s Tt B A S s e
| First 4 bytes of hostl MAC |
e St Sty B B S e S
| Last 2 bytes of hostl MAC 0000000000000 O0O0O]|

tt—b—t—t—t—t—F—+—+

YTransparent Security INT header reference definition, https://github.com/cablelabs/transparent-
security/blob/master/docs/int__header/INT__header.md

2020-11-11 20:14 In-band Network Telemetry 49

https://github.com/cablelabs/transparent-security/blob/master/docs/int_header/INT_header.md
https://github.com/cablelabs/transparent-security/blob/master/docs/int_header/INT_header.md

A. APPENDIX: AN EXTENSIVE (BUT NOT EXHAUSTIVE) SET OF METADATA

A. Appendix: An extensive (but not exhaustive) set of Metadata

Here we list a set of exemplary metadata that future versions of the spec may support as well as
those are supported in the current spec.

A.1. Node-level

Node id
The unique ID of an INT node. This is generally administratively assigned. Node IDs must be
unique within an INT domain.

Control plane state version number
Whenever a control-plane state changes (e.g., IP FIB update), the node’s control plane can also
update this version number in the data plane. INT packets may use these version numbers to
determine which control-plane state was active at the time packets were forwarded.

A.2. Ingress

Ingress interface identifier
The interface on which the INT packet was received. A packet may be received on an arbitrary
stack of interface constructs starting with a physical port. For example, a packet may be received
on a physical port that belongs to a link aggregation port group, which in turn is part of a Layer
3 Switched Virtual Interface, and at Layer 3 the packet may be received in a tunnel. Although
the entire interface stack may be monitored in theory, this specification allows for monitoring of
up to two levels of ingress interface identifiers. The semantics of interface identifiers may differ
across devices, each INT hop chooses the interface type it reports at each of the two levels.

Ingress timestamp
The device local time when the INT packet was received on the ingress physical or logical port.

Ingress interface RX pkt count
Total # of packets received so far (since device initialization or counter reset) on the ingress
physical port or logical interface where the INT packet was received.

Ingress interface RX byte count
Total # of bytes received so far on the ingress physical port or logical interface where the INT
packet was received.

Ingress interface RX drop count
Total # of packet drops occurred so far on the ingress physical port or logical interface where
the INT packet was received.

Ingress interface RX utilization
Current utilization of the ingress physical port or logical interface where the INT packet was
received. The exact mechanism (bin bucketing, moving average, etc.) is device specific and
while the latter is clearly superior to the former, the INT framework leaves those decisions to
device vendors.

2020-11-11 20:14 In-band Network Telemetry 50

A.3. EgresA. APPENDIX: AN EXTENSIVE (BUT NOT EXHAUSTIVE) SET OF METADATA

A.3. Egress

Egress interface identifier
The interface on which the INT packet was sent out. A packet may be transmitted on an
arbitrary stack of interface constructs ending at a physical port. For example, a packet may be
transmitted on a tunnel, out of a Layer 3 Switched Virtual Interface, on a Link Aggregation
Group, out of a particular physical port belonging to the Link Aggregation Group. Although
the entire interface stack may be monitored in theory, this specification allows for monitoring of
up to two levels of egress interface identifiers. The semantics of interface identifiers may differ
across devices, each INT hop chooses the interface type it reports at each of the two levels.

Egress timestamp
The device local time when the INT packet was processed by the egress physical port or logical
interface.

Egress interface TX pkt count
Total # of packets forwarded so far (since device initialization or counter reset) through the
egress physical port or logical interface where the INT packet was also forwarded.

Egress interface TX byte count
Total # of bytes forwarded so far through the egress physical port or logical interface where the
INT packet was forwarded.

Egress interface TX drop count
Total # of packet drops occurred so far on the egress physical port or logical interface where
the INT packet was forwarded.

Egress interface TX utilization
Current utilization of the egress interface via which the INT packet was sent out.

A.4. Buffer Information

Queue id
The id of the queue the device used to serve the INT packet.

Instantaneous queue length
The instantaneous length (in bytes, cells, or packets) of the queue the INT packet has observed
in the device while being forwarded. The units used need not be consistent across an INT
domain, but care must be taken to ensure that there is a known, consistent mapping of {device,
queue} values to their respective unit {packets, bytes, cells}.

Average queue length
The average length (in bytes, cells, or packets) of the queue via which the INT packet was
served. The calculation mechanism of this value is device specific.

Queue drop count
Total # of packets dropped from the queue.

The metadata below are introduced to capture the buffer occupancy INT packet observes in the
device while being forwarded. Use case is when buffer is shared between multiple queues.

Buffer id
The id of the buffer the device used to serve the INT packet.

2020-11-11 20:14 In-band Network Telemetry 51

A.5. Miscellaneous B. ACKNOWLEDGEMENTS

Instantaneous buffer occupancy
The instantaneous value (in bytes, or cells) of the buffer occupancy the INT packet has observed
in the device while being forwarded. The units used need not be consistent across an INT
domain, but care must be taken to ensure that there is a known, consistent mapping of {device,
buffer} values to their respective unit {bytes, cells}.

Average buffer occupancy
The average value (in bytes or cells) of the buffer occupancy that the INT packet was observed.
The calculation mechanism of this value is device specific.

A.5. Miscellaneous

Checksum Complement
This field enables a Checksum-neutral update when INT is encapsulated over an L4 protocol
that uses a Checksum field, such as TCP or UDP.

B. Acknowledgements

We thank the following individuals for their contributions to the design, specification and imple-
mentation of this spec.

e Daniel Alvarez

o Parag Bhide

e Dennis Cai

e Dan Daly

e Bruce Davie

e Ed Doe

e Senthil Ganesan
e Anoop Ghanwani
e Mukesh Hira

e Hugh Holbrook

e Raja Jayakumar
e Changhoon Kim
e Jeongkeun Lee

e Randy Levensalor
e Tal Mizrahi

e Masoud Moshref
e Michael Orr

e Heidi Ou

e Ramesh Sivakolundu
o Mickey Spiegel

o Bapi Vinnakota

2020-11-11 20:14 In-band Network Telemetry 52

C. CHANGE LOG

C. Change log

2015-09-28
— Initial release
2016-06-19

— Updated section 5.7.3, the Length field definition of VXLAN GPE shim header, to be
consistent with the example in section 6.

2017-10-17

— Introduced INT over TCP/UDP (section 5.7.2 and new example)

— Removed BOS (Bottom-Of-Stack) bit at each 4B metadata, from the header definition
and examples

Updated the INT instruction bitmap and the meaning of a few instructions (section 5.8)
Moved the INT transit P4 program from Appendix to the main section. Re-wrote the
program in p4_ 16.

2017-12-11

Increased the size of Version field from 2b to 4b in INT Metadata Header

Improved the header presentation of the examples and clarified the assumptions in sec-
tion 6

— Formatted the spec as a Madoko file

— Tag v0.5 spec

2018-02-13

— Elaborated on interactions between INT and MTU settings. Defined switch behavior
when inserting INT metadata in a packet would result in egress link MTU to be exceeded.

— Defined behavior of INT transit switch when it receives reserved bits set in the INT
header

2018-02-14
— Replaced Max Hop Count and Total Hop Count with Remaining Hop Count
2018-02-28

— Added Probe Marker approach as another way to indicate the existence of INT over
TCP/UDP (section 5.7.2).

2018-03-08
— Added support for monitoring of two levels of ingress and egress port identifiers
2018-03-13

— Defined INT domain in section 2.
— Described a possible allocation of non-contiguous DSCP codepoints for INT over
TCP/UDP in section 5.7.2.

2020-11-11 20:14 In-band Network Telemetry 53

C. CHANGE LOG

— Relaxed the location of INT stack relative to TCP options in section 5.7.2.
e 2018-03-14

— Added the Checksum Complement metadata.
e 2018-03-29

— Removed queue congestion status from the list of metadata.

Removed Section 4.2 (Handling INT Packets) on slow path processing using follow-up
packets.

Removed the examples of piggybacked metadata for closed loop control.

The expectation is that any of these may be reintroduced in future versions of INT.
They could benefit from a better understanding of use cases and some preliminary im-
plementation experience.

e 2018-03-31

— Defined checksum update behavior more precisely
— Miscellaneous editorial changes in preparation for v1.0

» 2018-04-02

— Revised the example transit code to be compliant with spec v1.0, perform incremental
TCP/UDP checksum updates, and against PSA architecture instead of vimodel.

e 2018-04-03
— Some more editorial changes for v1.0
e 2018-04-10

— Removed the option to modify L4 destination port to indicate INT over TCP/UDP.
— Removed INT Tail header from INT over TCP/UDP encapsulation.
— Added DSCP to the INT over TCP/UDP shim header.

» 2018-04-20

— Some more editorial changes for v1.0
— Tag v1.0 spec

e 2018-05-08

— Fixed checksum subtract/add calls in the reference code
e 2018-08-17

— Fixed INT DSCP mask in the reference code
e 2018-12-07

— Added instruction bit for buffer occupancy

» 2019-07-03

2020-11-11 20:14 In-band Network Telemetry 54

C. CHANGE LOG

— Added INT modes of operation: INT-XD/MX/MD and INT-CLONE/PROBE-MD.
— Removed the reference code

e 2020-01-15

— Added GPE bit to INT shim header for VXLAN GPE encapsulation

— Swapped the length and reserved bytes in the shim header to align with other INT
transports, and to align with the VXLAN GPE shim header format.

Changed the length definition in the shim header to exclude the shim header itself, in
order to align with the VXLAN GPE shim header format.

— Increased ingress and egress timestamp size to 8 bytes.

e 2020-01-16

— Changed the meaning of the length field in every INT shim header. The length of the
shim header is NOT included any more.
— Revised INT over UDP encap, using a new UDP destination port number (INT__TBD).

e 2020-01-28

— Added Domain ID, Domain Specific (DS) Instructions, and DS Flags.

— As a result, the INT common header size is increased from 8B to 12B.

— Removed Rep bits and ‘C’ bit, introduced ‘D’ bit for Discarding Copy/Clone at INT
Sink.

o 2020-02-11

— Added ‘source-only’ metadata as part of DS instruction.
— Changed the Hop ML to be required only by Transit and Sink devices.

e 2020-02-14

— Added IPv4/GRE transport for INT.
— Tag V2.0 spec

e 2020-03-04
— Added example with ‘source-only’ domain-specific metadata.
e 2020-04-06
— Added INT-MX Header format, per-hop header operations, and examples
e 2020-04-17
— Changed ‘port identifier’ terminology to ‘interface identifier’
e 2020-04-30

— Added INT-MD alternative MTU processing, generating ‘Intermediate Report’
— Changed ‘switch id’ terminology to ‘node id’

e 2020-05-12

— Changed Geneve Option Class codepoint to value assigned by IANA

2020-11-11 20:14 In-band Network Telemetry 55

2020-06-10

— Specified that INT-MX ‘source-only’ metadata must be embedded in the packet and
should be reported to the monitoring system by each node.

2020-06-15

— Simplified INT-MX processing by removing the padding option.
2020-10-08

— Added an example of INT over UDP with an IPSec payload
2020-11-11

— Generalized INT-MX ‘source-only’ metadata to ‘source-inserted’ metadata. When the
bit is defined for a domain, the definition specifies the reporting requirement and whether
the ‘source-inserted’ metadata is mutable.

— Tag V2.1 spec

56

	1. Introduction
	2. Terminology
	3. INT Modes of Operation
	3.1. INT Application Modes
	3.2. INT Applied to Synthetic Traffic

	4. What To Monitor
	4.1. Device-level Information
	4.2. Ingress Information
	4.3. Egress Information

	5. INT Headers
	5.1. INT Header Types
	5.2. Per-Hop Header Operations
	5.2.1. INT Source Node
	5.2.2. INT Transit Hop Node
	5.2.3. INT Sink Node

	5.3. MTU Settings
	5.4. Congestion Considerations
	5.5. INT over any encapsulation
	5.6. Checksum Update
	5.7. Header Location
	5.7.1. INT over IPv4/GRE
	5.7.2. INT over TCP/UDP
	5.7.3. INT over VXLAN GPE
	5.7.4. INT over Geneve

	5.8. INT-MD Metadata Header Format
	5.9. INT-MX Header Format

	6. Examples
	6.1. Example with INT-MD over TCP
	6.2. Example with INT-MX over TCP
	6.3. Example with new UDP header and INT-MD inserted before TCP
	6.4. Example with new UDP header and INT-MX inserted before TCP
	6.5. Example with INT-MD in-between UDP header and UDP payload
	6.6. Example with INT-MX in-between UDP header and UDP payload
	6.7. Example with new IP and UDP headers and INT-MX inserted before IPSec
	6.8. Example with INT-MD over IPv4/GRE (Original packet IPv4)
	6.9. Example with INT-MX over IPv4/GRE (Original packet IPv4)
	6.10. Example with INT-MD over IPv4/GRE (Original packet CE or IP)
	6.11. Example with INT-MX over IPv4/GRE (Original packet CE or IP)
	6.12. Example with INT-MD over VXLAN GPE
	6.13. Example with INT-MX over VXLAN GPE
	6.14. Example with INT-MD over Geneve
	6.15. Example with INT-MX over Geneve
	6.16. Example with INT-MX including domain specific source-inserted metadata
	6.17. Example with INT-MD including domain specific source-only metadata

	A. Appendix: An extensive (but not exhaustive) set of Metadata
	A.1. Node-level
	A.2. Ingress
	A.3. Egress
	A.4. Buffer Information
	A.5. Miscellaneous

	B. Acknowledgements
	C. Change log

